Skip to main content
Log in

Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The aim of this study is to develop biogenic silver nanoparticles (AgNPs) using olive leaf (OL) and green tea leaf (GTL) extract with a green synthesis approach and to compare and evaluate the characteristics and antibacterial activity of synthesized AgNPs. Various parameters affecting AgNPs synthesis such as temperature, pH, reaction time, amount of reducing extract, and concentration of silver nitrate (AgNO3) were determined and optimized. Furthermore, the synthesized AgNPs were characterized by UV–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The formation of AgNPs was observed by changing the color of the reaction medium from white to dark brown and significantly increased in the basic environment with the change of temperature. The antibacterial activity of synthesized AgNPs was compared with that of aqueous OL and GTL by agar well diffusion method. According to the results, the best inhibition zone for E. coli bacteria resulted in an increase from 7 to 11 mm in GTL-synthesized AgNPs, and an increase from 9 to 10 mm in OL-synthesized AgNPs. Thus, green-synthesized AgNPs showed good antibacterial activity at lower concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akintelu, S. A., Olugbeko, S. C., & Folorunso, A. S. (2020). A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. International Nano Letters, 10, 237–248. https://doi.org/10.1007/s40089-020-00317-7

    Article  Google Scholar 

  2. Mahboub S, Zerrouki D, Henni A (2020) Green synthesis and characterization of silver nanoparticles using Juniperus communis leaf extract: Catalytic activity in real‐outdoor conditions and electrochemical properties. Applied Organometallic Chemistry 34https://doi.org/10.1002/aoc.5956

  3. Osonga, F. J., Kalra, S., Miller, R. M., Isika, D., & Sadik, O. A. (2020). Synthesis, characterization and antifungal activities of eco-friendly palladium nanoparticles. RSC Advances, 10, 5894–5904. https://doi.org/10.1039/C9RA07800B

    Article  Google Scholar 

  4. Fahmy, S. A., Preis, E., Bakowsky, U., & Azzazy, H.M.E.-S. (2020). Platinum nanoparticles: Green synthesis and biomedical applications. Molecules, 25, 4981. https://doi.org/10.3390/molecules25214981

    Article  Google Scholar 

  5. Wu, S., Rajeshkumar, S., Madasamy, M., & Mahendran, V. (2020). Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artificial Cells, Nanomedicine and Biotechnology, 48, 1153–1158. https://doi.org/10.1080/21691401.2020.1817053

    Article  Google Scholar 

  6. Azizi, S., Mohamad, R., Abdul Rahim, R., Mohammadinejad, R., & Bin Ariff, A. (2017). Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. International Journal of Biological Macromolecules, 104, 423–431. https://doi.org/10.1016/j.ijbiomac.2017.06.010

    Article  Google Scholar 

  7. Rodríguez-Sánchez, L., Blanco, M. C., & López-Quintela, M. A. (2000). Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B, 104, 9683–9688. https://doi.org/10.1021/jp001761r

    Article  Google Scholar 

  8. Babusca, D., Popescu, L., Sacarescu, L., Dorohoi, D. O., Creanga, D., & Oprica, L. A. (2020). Two phase photochemical synthesis of silver nanoparticles and their impact on the chlorophylls. Molecular Crystals and Liquid Crystals, 698, 56–64. https://doi.org/10.1080/15421406.2020.1731087

    Article  Google Scholar 

  9. Barani, H., & Mahltig, B. (2020). Microwave-assisted synthesis of silver nanoparticles: Effect of reaction temperature and precursor concentration on fluorescent property. Journal of Cluster Science. https://doi.org/10.1007/s10876-020-01945-x

    Article  Google Scholar 

  10. Nakano, M., Fujiwara, T., & Koga, N. (2016). Thermal decomposition of silver acetate: Physico-geometrical kinetic features and formation of silver nanoparticles. Journal Physcal Chemistry C Nanomater Interfaces, 120, 8841–8854. https://doi.org/10.1021/acs.jpcc.6b02377

    Article  Google Scholar 

  11. Mahmood, M., Abid, M., Faizan, M., Zafar, M. N., Raza, M. A., Ashfaq, M., Khan, A. M., Sumrra, S. H., & Zubair, M. (2020). Wet chemical synthesis of surfactant-capped quasi-spherical silver nanoparticles with enhanced antibacterial activity. Material Advance. https://doi.org/10.1039/d0ma00408a

    Article  Google Scholar 

  12. Quintero-Quiroz, C., Acevedo, N., Zapata-Giraldo, J., Botero, L. E., Quintero, J., Zárate-Triviño, D., Saldarriaga, J., & Pérez, V. Z. (2019). Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Research, 23, 27. https://doi.org/10.1186/s40824-019-0173-y

    Article  Google Scholar 

  13. Saeed, S., Iqbal, A., & Ashraf, M. A. (2020). Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environmental Science and Pollution Research International, 27, 37347–37356. https://doi.org/10.1007/s11356-020-07610-0

    Article  Google Scholar 

  14. Garg, D., Sarkar, A., Chand, P., Bansal, P., Gola, D., Sharma, S., Khantwal, S., Surabhi, M. R., Chauhan, N., & Bharti, R. K. (2020). Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications—a review. Progress in Biomaterials, 9, 81–95. https://doi.org/10.1007/s40204-020-00135-2

    Article  Google Scholar 

  15. Kumari S, Tehri N, Gahlaut A, Hooda V (2020) Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorganic and Nano-Metal Chemistry 1–10https://doi.org/10.1080/24701556.2020.1835978

  16. Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13, 223–245. https://doi.org/10.1080/17518253.2020.1802517

    Article  Google Scholar 

  17. Singh, A., Gaud, B., & Jaybhaye, S. (2020). Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Material Science Energy Technology, 3, 232–236. https://doi.org/10.1016/j.mset.2019.08.004

    Article  Google Scholar 

  18. Ijaz, M., Zafar, M., & Iqbal, T. (2021). Green synthesis of silver nanoparticles by using various extracts: A review. Inorganic and Nano-Metal Chemistry, 51, 744–755. https://doi.org/10.1080/24701556.2020.1808680

    Article  Google Scholar 

  19. Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  Google Scholar 

  20. Rashid, Z., Moadi, T., & Ghahremanzadeh, R. (2016). Green synthesis and characterization of silver nanoparticles using Ferula latisecta leaf extract and their application as a catalyst for the safe and simple one-pot preparation of spirooxindoles in water. New Journal of Chemistry, 40, 3343–3349. https://doi.org/10.1039/C5NJ02656C

    Article  Google Scholar 

  21. Zhang D, Ma X-L, Gu Y, Huang H, Zhang G-W (2020) Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry 8https://doi.org/10.3389/fchem.2020.00799

  22. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  23. Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A. K., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Plant-mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology, 60, 154–168. https://doi.org/10.1007/s12033-017-0053-4

    Article  Google Scholar 

  24. Shafey, A. M. E. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process Synth, 9, 304–339. https://doi.org/10.1515/gps-2020-0031

    Article  Google Scholar 

  25. Singh, M., Mallick, A. K., Banerjee, M., & Kumar, R. (2016). Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: Plausible mechanism of bacterial cell disintegration. Bulletin of Material Science (India), 39, 1871–1878. https://doi.org/10.1007/s12034-016-1317-5

    Article  Google Scholar 

  26. Flores-González, M., Talavera-Rojas, M., Soriano-Vargas, E., & Rodríguez-González, V. (2018). Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties. New Journal of Chemistry, 42, 2133–2139. https://doi.org/10.1039/C7NJ03812G

    Article  Google Scholar 

  27. Bernatoniene, J., & Kopustinskiene, D. (2018). The role of catechins in cellular responses to oxidative stress. Molecules, 23, 965. https://doi.org/10.3390/molecules23040965

    Article  Google Scholar 

  28. Markhali, F. S., Teixeira, J. A., & Rocha, C. M. R. (2020). Olive tree leaves—A source of valuable active compounds. Processes (Basel), 8, 1177. https://doi.org/10.3390/pr8091177

    Article  Google Scholar 

  29. González, E., Gómez-Caravaca, A. M., Giménez, B., Cebrián, R., Maqueda, M., Martínez-Férez, A., Segura-Carretero, A., & Robert, P. (2019). Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chemistry, 279, 40–48. https://doi.org/10.1016/j.foodchem.2018.11.127

    Article  Google Scholar 

  30. Liu, M., Yong, Q., Lian, Z., Huang, C., & Yu, S. (2020). Continuous bioconversion of oleuropein from Olive leaf extract to produce the bioactive product hydroxytyrosol using carrier-immobilized enzyme. Applied Biochemistry and Biotechnology, 190, 148–165. https://doi.org/10.1007/s12010-019-03081-3

    Article  Google Scholar 

  31. Oda, A. M., Abdulkadhim, H., Jabuk, S. I. A., Hashim, R., Fadhil, I., Alaa, D., & Kareem, A. (2019). Green synthesis of silver nanoparticle by cauliflower extract: Characterisation and antibacterial activity against storage. IET Nanobiotechnology, 13, 530–535. https://doi.org/10.1049/iet-nbt.2018.5095

    Article  Google Scholar 

  32. Rajput, S., Kumar, D., & Agrawal, V. (2020). Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Reports, 39, 921–939. https://doi.org/10.1007/s00299-020-02539-7

    Article  Google Scholar 

  33. Suvarna, A. R., Shetty, A., Anchan, S., Kabeer, N., & Nayak, S. (2020). Cyclea peltata leaf mediated green synthesized bimetallic nanoparticles exhibits methyl green dye degradation capability. Bionanoscience, 10, 606–617. https://doi.org/10.1007/s12668-020-00739-9

    Article  Google Scholar 

  34. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA, Romo OA, Chávez-Almazán LA, Susarrey-Arce A (2020) Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Science and Report 10https://doi.org/10.1038/s41598-020-69606-7

  35. Nawaz MP, Banu AA, Mohamed SR, Palanivelu M, Ayeshamariam A (2020) Anticancer activity of silver nanoparticle by using Cassia auriculata extract. European Journal Medicine Plants 1–9https://doi.org/10.9734/ejmp/2020/v31i230210

  36. Chandra, A., Bhattarai, A., Yadav, A. K., Adhikari, J., Singh, M., & Giri, B. (2020). Green synthesis of silver nanoparticles using tea leaves from three different elevations. ChemistrySelect, 5, 4239–4246. https://doi.org/10.1002/slct.201904826

    Article  Google Scholar 

  37. Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7, 1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007

    Article  Google Scholar 

  38. Rolim, W. R., Pelegrino, M. T., de Araújo, L. B., Ferraz, L. S., Costa, F. N., Bernardes, J. S., Rodigues, T., Brocchi, M., & Seabra, A. B. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463, 66–74. https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  Google Scholar 

  39. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  40. Rafaque, Z., Abid, N., Liaqat, N., et al. (2020). In-vitro investigation of antibiotics efficacy against uropathogenic Escherichia coli biofilms and antibiotic induced biofilm formation at sub-minimum inhibitory concentration of ciprofloxacin. Infection and Drug Resistance, 13, 2801–2810. https://doi.org/10.2147/IDR.S258355

    Article  Google Scholar 

  41. Mat Yusuf, S. N. A., Che Mood, C. N. A., Ahmad, N. H., Sandai, D., Lee, C. K., & Lim, V. (2020). Optimization of biogenic synthesis of silver nanoparticles from flavonoid-rich Clinacanthus nutans leaf and stem aqueous extracts. Royal Society Open Science, 7, 200065. https://doi.org/10.1098/rsos.200065

    Article  Google Scholar 

  42. Arunachalam, K., Shanmuganathan, B., Sreeja, P. S., & Parimelazhagan, T. (2015). Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environmental Science and Pollution Research International, 22, 18066–18075. https://doi.org/10.1007/s11356-015-4992-7

    Article  Google Scholar 

  43. Akter, M., Sikder, M. T., Rahman, M. M., Ullah, A. K. M. A., Hossain, K. F. B., Banik, S., Hosokawa, T., Saito, T., & Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  Google Scholar 

  44. Dutt, A., & Upadhyay, L. S. B. (2018). Synthesis of cysteine-functionalized silver nanoparticles using green tea extract with application for lipase immobilization. Analytical Letters, 51, 1071–1086. https://doi.org/10.1080/00032719.2017.1367399

    Article  Google Scholar 

  45. Rashidipour M, Heydari R (2014) Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. Journal of Nanostructure in Chemist 4https://doi.org/10.1007/s40097-014-0112-3

  46. Stavinskaya O, Laguta I, Fesenko T, Krumova M (2019) Effect of temperature on green synthesis of silver nanoparticles using Vitex Agnus-castus extract. Chemical Journal of Moldova 14:117–121. https://doi.org/10.19261/cjm.2019.636

  47. Seifipour, R., Nozari, M., & Pishkar, L. (2020). Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2926–2936. https://doi.org/10.1007/s10904-020-01441-9

    Article  Google Scholar 

  48. Azarbani, F., & Shiravand, S. (2020). Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chemistry Letters and Reviews, 13, 41–49. https://doi.org/10.1080/17518253.2020.1726504

    Article  Google Scholar 

  49. Mahiuddin, M., Saha, P., & Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials (Basel), 10, 1777. https://doi.org/10.3390/nano10091777

    Article  Google Scholar 

  50. Kumar V, Wadhwa R, Kumar N, Maurya PK (2019) A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles. 3 Biotechnology 9: . https://doi.org/10.1007/s13205-018-1544-0

  51. Ajitha, B., Ashok Kumar Reddy, Y., & Sreedhara Reddy, P. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science & Engineering, C: Materials for Biological Applications, 49, 373–381. https://doi.org/10.1016/j.msec.2015.01.035

    Article  Google Scholar 

  52. Sánchez, G. R., Castilla, C. L., Gómez, N. B., García, A., Marcos, R., & Carmona, E. R. (2016). Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles. Materials Letters, 183, 255–260. https://doi.org/10.1016/j.matlet.2016.07.115

    Article  Google Scholar 

  53. Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., & Kalilur Rahiman, A. (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 180, 243–252. https://doi.org/10.1016/j.jphotobiol.2018.02.014

    Article  Google Scholar 

  54. Khoshnamvand, M., Huo, C., & Liu, J. (2019). Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: Characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. Journal of Molecular Structure, 1175, 90–96. https://doi.org/10.1016/j.molstruc.2018.07.089

    Article  Google Scholar 

  55. Gajendran, B., Durai, P., Varier, K. M., Liu, W., Li, Y., Rajendran, S., Nagarathnam, R., & Chinnasamy, A. (2019). Green synthesis of silver nanoparticle from Datura inoxia flower extract and its cytotoxic activity. Bionanoscience, 9, 564–572. https://doi.org/10.1007/s12668-019-00645-9

    Article  Google Scholar 

  56. Xu, W., Fan, Y., Liu, X., Luo, D., Liu, H., & Yang, N. (2018). Catalytic and antibacterial properties of silver nanoparticles green biosynthesized using soluble green tea powder. Materials Research Express, 5, 045029. https://doi.org/10.1088/2053-1591/aabb71

    Article  Google Scholar 

  57. Thatoi, P., Kerry, R. G., Gouda, S., Das, G., Pramanik, K., Thatoi, H., & Patra, J. K. (2016). Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. Journal of Photochemistry and Photobiology B: Biology, 163, 311–318. https://doi.org/10.1016/j.jphotobiol.2016.07.029

    Article  Google Scholar 

  58. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology 7https://doi.org/10.3389/fmicb.2016.01831

  59. Gurunathan, S. (2019). Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arabian Journal of Chemistry, 12, 168–180. https://doi.org/10.1016/j.arabjc.2014.11.014

    Article  Google Scholar 

  60. Mikhailova, E. O. (2020). Silver nanoparticles: Mechanism of action and probable bio-application. Journal of Functional Biomaterials, 11, 84. https://doi.org/10.3390/jfb11040084

    Article  Google Scholar 

  61. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013–8024. https://doi.org/10.2147/ijn.s189295

    Article  Google Scholar 

  62. Liao, C., Li, Y., & Tjong, S. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20, 449. https://doi.org/10.3390/ijms20020449

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to especially thank Prof. Dr. Tevfik Özen and Semiha Yenigün for performing antibacterial work in this study and would also like to thank the Ondokuz Mayıs University, Turkey, for the financial support given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bergal.

Ethics declarations

Research involving humans and animals statement

None.

Informed Consent

None.

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1947 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergal, A., Matar, G.H. & Andaç, M. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. BioNanoSci. 12, 307–321 (2022). https://doi.org/10.1007/s12668-022-00958-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00958-2

Keywords

Navigation