Skip to main content

Advertisement

Log in

A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Green procedure for synthesizing silver nanoparticles (AgNPs) is currently considered due to its economy and toxic-free effects. Several existing works on synthesizing AgNPs using leaves extract still involve the use of physical or mechanical treatment such as heating or stirring, which consume a lot of energy. To extend and explore the green extraction philosophy, we report here the synthesis and antibacterial evaluations of a purely green procedure to synthesize AgNPs using Carica papaya, Manihot esculenta, and Morinda citrifolia leaves extract without the aforementioned additional treatment. The produced AgNPs were characterized using the ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and antibacterial investigations. For antibacterial tests, two bacteria namely Escherichia coli and Bacillus cereus were selected. The presently employed method has successfully produced spherical AgNPs having sizes ranging from 9 to 69 nm, with plasmonic characteristics ranging from 356 to 485 nm, and energy-dispersive X-ray peak at approximately 3 keV. In addition, the smallest particles can be produced when Manihot esculenta leaves extract was applied. Moreover, this study also confirmed that both the leaves and synthesized AgNPs exhibit the antibacterial capability, depending on their concentration and the bacteria type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim M-B, Jeon S, Chung D-Y, Bae J, Park J, Jeong U, Kim K (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809

    Article  CAS  Google Scholar 

  2. Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, Graham D (2004) Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance raman scattering. Nat Biotechnol 22:1133–1138

    Article  CAS  Google Scholar 

  3. Gangopadhyay P, Kesavamoorthy R, Bera S, Magudapathy P, Nair KGM, Panigrahi BK, Narasimhan SV (2005) Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys Rev Lett 94:047403

    Article  CAS  Google Scholar 

  4. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I (2016) Green synthesis of silver nanoparticles and characterization of their inhibitory effects on ages formation using biophysical techniques. Sci Rep 6:1–10

    Article  Google Scholar 

  5. Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng 2:1717–1723

    Article  CAS  Google Scholar 

  6. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  CAS  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  8. Luis López-Miranda J, Borjas-Garcia SE, Esparza R, Rosas G (2016) Synthesis and catalytic evaluation of silver nanoparticles synthesized with Aloysia triphylla leaf extract. J Clust Sci 27:1989–1999

    Article  Google Scholar 

  9. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  10. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Article  Google Scholar 

  11. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  12. Dal Lago V, Franca de Oliveira L, de Almeida Goncalves K, Kobarg J, Borba Cardoso M (2011) Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mater Chem 21:12267–12273

    Article  Google Scholar 

  13. Sathishkumar P, Vennila K, Jayakumar R, Yusoff ARM, Hadibarata T, Palvannan T (2016) Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (mcf-7) cells. Bioprocess Biosyst Eng 39:651–659

    Article  CAS  Google Scholar 

  14. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45

    Article  CAS  Google Scholar 

  15. Kovács D, Igaz N, Keskeny C, Bélteky P, Tóth T, Gáspár R, Madarász D, Rázga Z, Kónya Z, Boros IM, Kiricsi M (2016) Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci Rep 6:1–10

    Article  Google Scholar 

  16. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  17. Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:1–15

    Article  Google Scholar 

  18. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on Escherichia coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  19. Asharani PV, Yi Lian W, Zhiyuan G, Suresh V (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8

    Article  Google Scholar 

  20. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  Google Scholar 

  21. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in brl 3a rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  22. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141

    Article  CAS  Google Scholar 

  23. Ramachandran R, Krishnaraj C, Sivakumar AS, Prasannakumar P, Abhay Kumar VK, Shim KS, Song C-G, Yun S-I (2017) Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater Sci Eng C 73:674–683

    Article  CAS  Google Scholar 

  24. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  25. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882

    Article  CAS  Google Scholar 

  26. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Siegrist H, Burkhardt M (2015) Transformation of AgCl nanoparticles in a sewer system—a field study. Sci Total Environ 535:20–27

    Article  CAS  Google Scholar 

  27. Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877

    Article  CAS  Google Scholar 

  28. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  29. Huang Z, Chen G, Zeng G, Guo Z, He K, Hu L, Wu J, Zhang L, Zhu Y, Song Z (2017) Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. J Hazard Mater 321:37–46

    Article  CAS  Google Scholar 

  30. Ghorashi SAA, Kamali M (2011) Synthesis of silver nanoparticles using complexing agent method: comparing the effect of ammonium hydroxide and nitric acid on some physical properties of nanoparticles. J Clust Sci 22:667–672

    Article  CAS  Google Scholar 

  31. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2015) Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C 49:373–381

    Article  CAS  Google Scholar 

  32. Kumar S, Mitra A, Halder D (2017) Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. Food Sci Technol 75:293–300

    CAS  Google Scholar 

  33. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynth esis, antibacterial activity and anticancer effects against prostate cancer (pc-3) cells of silver nanoparticles using Dimocarpus longan Lour. Peel extract. Nanoscale Res Lett 11:1–10

    Article  Google Scholar 

  34. Mishra A, Tripathy SK, Yun S-I (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248

    Article  CAS  Google Scholar 

  35. Balan K, Qing W, Wang Y, Liu X, Palvannan T, Wang Y, Ma F, Zhang Y (2016) Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv 6:40162–40168

    Article  CAS  Google Scholar 

  36. Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B 98:112–119

    Article  CAS  Google Scholar 

  37. Kharat SN, Mendhulkar VD (2016) Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C 62:719–724

    Article  CAS  Google Scholar 

  38. Muthukrishnan S, Bhakya S, Senthil Kumar T, Rao MV (2015) Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii—an endemic species. Ind Crops Prod 63:119–124

    Article  CAS  Google Scholar 

  39. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. For enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B 108:255–259

    Article  CAS  Google Scholar 

  40. Salem WM, Haridy M, Sayed WF, Hassan NH (2014) Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind Crops Prod 62:228–234

    Article  CAS  Google Scholar 

  41. Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562–566

    Article  CAS  Google Scholar 

  42. Ferraro V, Piccirillo C, Tomlins K, Pintado ME (2016) Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) crops and their derived foodstuffs: safety, security and nutritional value. Crit Rev Food Sci Nutr 56:2714–2727

    Article  CAS  Google Scholar 

  43. Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570

    Article  CAS  Google Scholar 

  44. Zin ZM, Abdul-Hamid A, Osman A (2002) Antioxidative activity of extracts from mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem 78:227–231

    Article  CAS  Google Scholar 

  45. Imaga NA, Gbenle GO, Okochi VI, Adenekan S, Duro-Emmanuel T, Oyeniyi B, Dokai PN, Oyenuga M, Otumara A, Ekeh FC (2010) Phytochemical and antioxidant nutrient constituents of Carica papaya and Parquetina nigrescens extracts. Sci Res Essays 5:2201–2205

    Google Scholar 

  46. Nwofia GE, Ojimelukwe P, Eji C (2012) Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes. Int J Med Aromat Plants 2:200–206

    Google Scholar 

  47. Sang S, Wang M, He K, Liu G, Dong Z, Badmaev V, Zheng QY, Ghai G, Rosen RT, Ho CT (2002) Chemical components in noni fruits and leaves (Morinda citrifolia L.). ACS Symp Ser 803:134–150

    Article  CAS  Google Scholar 

  48. Dittmar A (1993) Morinda citrifolia L. use in indigenous samoan medicine. J Herbs Spices Med Plants 1:77–92

    Article  Google Scholar 

  49. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:1–14

    Article  CAS  Google Scholar 

  50. Alsalhi MS, Devanesan S, Alfuraydi AA, Vishnubalaji R, Munusamy MA, Murugan K, Nicoletti M, Benelli G (2016) Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int J Nanomed 11:4439–4449

    Article  Google Scholar 

  51. Mueller JH, Hinton J (1941) A protein-free medium for primary isolation of the gonococcus and meningococcus. Proc Soc Exp Biol Med 48:330–333

    Article  CAS  Google Scholar 

  52. Bauer A (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  53. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  54. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  55. Sastry M, Mayya KS, Patil V, Paranjape DV, Hegde SG (1997) Langmuir—blodgett films of carboxylic acid derivatized silver colloidal particles: role of subphase pH on degree of cluster incorporation. J Phys Chem B 101:4954–4958

    Article  CAS  Google Scholar 

  56. Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410

    Article  CAS  Google Scholar 

  57. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676

    Article  CAS  Google Scholar 

  58. Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2007) Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym Sci 286:403–410

    Article  Google Scholar 

  59. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  60. Tan KS, Cheong KY (2013) Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J Nanopart Res 15:1–29

    Google Scholar 

  61. Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K, Ganapathi A (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B 106:86–92

    Article  CAS  Google Scholar 

  62. Kanipandian N, Kannan S, Ramesh R, Subramanian P, Thirumurugan R (2014) Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull 49:494–502

    Article  CAS  Google Scholar 

  63. Das J, Velusamy P (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater Res Bull 48:4531–4537

    Article  CAS  Google Scholar 

  64. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  65. Kalathil S, Lee J, Cho MH (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485

    Article  CAS  Google Scholar 

  66. Ravichandran V, Vasanthi S, Shalini S, Ali Shah SA, Harish R (2016) Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 180:264–267

    Article  CAS  Google Scholar 

  67. Asghar N, Naqvi SAR, Hussain Z, Rasool N, Khan ZA, Shahzad SA, Sherazi TA, Janjua MRSA, Nagra SA, Zia-Ul-Haq M (2016) Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J 10(1):11

    Article  Google Scholar 

  68. Noumedem JA, Mihasan M, Lacmata ST, Stefan M, Kuiate JR, Kuete V (2013) Antibacterial activities of the methanol extracts of ten cameroonian vegetables against gram-negative multidrug-resistant bacteria. BMC Complement Altern Med 13:1–9

    Article  Google Scholar 

  69. Zakaria Z, Khairi H, Somchit M, Sulaiman M, Mat Jais A, Reezal I, Mat Zaid N, Abdul Wahab S, Fadzil N, Abdullah M (2006) The in vitro antibacterial activity and brine shrimp toxicity of Manihot esculenta var. sri pontian extracts. Int J Pharm 2:216–220

    Article  Google Scholar 

  70. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Article  Google Scholar 

  71. Jose Ruben M, Jose Luis E, Alejandra C, Katherine H, Juan BK, Jose Tapia R, Miguel Jose Y (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  Google Scholar 

  72. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for Grants (R.J130000.7809.4F619 and Q.J130000.2522.14H40), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salmiati or Tony Hadibarata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syafiuddin, A., Salmiati, Hadibarata, T. et al. A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst Eng 40, 1349–1361 (2017). https://doi.org/10.1007/s00449-017-1793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1793-z

Keywords

Navigation