Skip to main content

Advertisement

Log in

Waste Fruit Peel Mediated Synthesis of Silver Nanoparticles and Its Antibacterial Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The strong biological activities of nanoparticles are an essential factor because the resistance shown by bacterial species to chemical biocide is one of the major problems. In the current study, it was hypothesized that the biological waste might have biological power to reduce the silver nitrate into silver nanoparticles (AgNPs). Therefore, the biosynthesis of AgNPs using biological waste residue and their antibacterial influence were studied. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray techniques were used to analyze the fabricated AgNPs. In major findings, the SEM results revealed the spherical and small-sized AgNPs. The biological waste residue synthesized nanoparticles revealed that the highest inhibition zone was 25.74 ± 0.20 mm against Sphingomonas sp., while the smallest zone of inhibition was observed 9.76 ± 0.37 mm against Massilia sp. The best results were obtained against gram-positive and gram-negative bacterial isolates. Therefore, it is suggested to use the biological waste instead of other biological sources because of less toxicity, cost-effective, and easy availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maheshwaran, G., Nivedhitha Bharathi, A., Malai Selvi, M., Krishna Kumar, M., Mohan Kumar, R., & Sudhahar, S. (2020). Green synthesis of Silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. Journal of Environmental Chemical Engineering, 8(5), 104137. https://doi.org/10.1016/j.jece.2020.104137.

    Article  Google Scholar 

  2. Ali, I., Qiang, T. Y., Ilahi, N., Adnan, M., & Sajjad, W. (2018). Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens. International Journal Bioscience, 13(5), 1–15. https://doi.org/10.12692/ijb/13.5.1-15.

    Article  Google Scholar 

  3. Korkmaz, N. (2020). Bioreduction: the biological activity, characterization, and synthesis of silver. Turkish Journal of Chemistry, 44(2), 325–334. https://doi.org/10.3906/kim-1910-8.

    Article  Google Scholar 

  4. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 84. https://doi.org/10.1186/s12951-018-0408-4.

    Article  Google Scholar 

  5. Korkmaz, N., Ceylan, Y., Taslimi, P., Karadağ, A., Bülbül, A. S., & Şen, F. (2020). Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity. Advanced Powder Technology, 31(7), 2942–2950. https://doi.org/10.1016/j.apt.2020.05.020.

    Article  Google Scholar 

  6. Sidorova, D. E., Lipasova, V. A., Nadtochenko, V. A., Baranchikov, A. E., Astafiev, A. A., Svergunenko, S. L., Koksharova, O. A., Pliuta, V. A., Popova, A. A., Gulin, A. A., & Khmel, I. A. (2018). Synthesis of silver nanoparticles with the use of herbaceous plant extracts and effect of nanoparticles on bacteria. Applied Biochemistry and Microbiology, 54(8), 816–823. https://doi.org/10.1134/S0003683818080069.

    Article  Google Scholar 

  7. Mathivanan, K., Selva, R., Chandirika, J. U., Govindarajan, R. K., Srinivasan, R., Annadurai, G., & Duc, P. A. (2019). Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization. Biocatalysis and Agricultural Biotechnology, 22, 101373. https://doi.org/10.1016/j.bcab.2019.101373.

    Article  Google Scholar 

  8. Galib, B. M., Mashru, M., Jagtap, C., Patgiri, B. J., & Prajapati, P. K. (2011). Therapeutic potentials of metals in ancient India: A review through Charaka Samhita. J-AIM, 2(2), 55–63. https://doi.org/10.4103/0975-9476.82523.

    Article  Google Scholar 

  9. Mohr, K. I. (2016). History of antibiotics research. In How to Overcome the Antibiotic Crisis (pp. 237–272). Switzerland: Springer.

    Chapter  Google Scholar 

  10. Zazo, H., Colino, C. I., & Lanao, J. M. (2016). Current applications of nanoparticles in infectious diseases. Journal of Controlled Release, 224, 86–102. https://doi.org/10.1016/j.jconrel.2016.01.008.

    Article  Google Scholar 

  11. Rashmi, B. N., Harlapur, S. F., Avinash, B., Ravikumar, C. R., Nagaswarupa, H. P., Anil Kumar, M. R., Gurushantha, K., & Santosh, M. S. (2020). Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorganic Chemistry Communications, 111, 107580. https://doi.org/10.1016/j.inoche.2019.107580.

    Article  Google Scholar 

  12. Lim, J. K., Liu, T., Jeong, J., Shin, H., Jang, H. J., Cho, S.-P., & Park, J. S. (2020). In situ syntheses of silver nanoparticles inside silver citrate nanorods via catalytic nanoconfinement effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125343. https://doi.org/10.1016/j.colsurfa.2020.125343.

    Article  Google Scholar 

  13. Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702. https://doi.org/10.1039/C8RA08982E.

    Article  Google Scholar 

  14. Ali, I., Imkan, I. F., Ahmad, F., Nisar, J., Shah, M. R., Ali, S., Ullah, S., Althagafi, I. I., & Ateeq, M. (2021). Sensing applications of triazole conjugated silver nanoparticles. Journal of Molecular Structure, 1226, 129306. https://doi.org/10.1016/j.molstruc.2020.129306.

    Article  Google Scholar 

  15. Al-Ansari, M. M., Dhasarathan, P., Ranjitsingh, A. J. A., & Al-Humaid, L. A. (2020). Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI. Saudi Journal Biology Science, 27(11), 2993–3002. https://doi.org/10.1016/j.sjbs.2020.09.008.

    Article  Google Scholar 

  16. El Barghouti, M., Akjouj, A., & Mir, A. (2020). Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum, 180, 109497. https://doi.org/10.1016/j.vacuum.2020.109497.

    Article  Google Scholar 

  17. Nesrin, K., Yusuf, C., Ahmet, K., Ali, S. B., Muhammad, N. A., Suna, S., & Fatih, Ş. (2020). Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. Journal of Pharmaceutical and Biomedical Analysis, 179, 112993. https://doi.org/10.1016/j.jpba.2019.112993.

    Article  Google Scholar 

  18. Kakakhel, M. A., Wu, F., Gu, J.-D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration & Biodegradation, 143, 104721. https://doi.org/10.1016/j.ibiod.2019.104721.

    Article  Google Scholar 

  19. Zamarchi, F., & Vieira, I. C. (2021). Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract. Journal of Pharmaceutical and Biomedical Analysis, 196, 113912. https://doi.org/10.1016/j.jpba.2021.113912.

    Article  Google Scholar 

  20. Roy, P., Das, B., Mohanty, A., & Mohapatra, S. (2017). Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7(8), 843–850. https://doi.org/10.1007/s13204-017-0621-8.

    Article  Google Scholar 

  21. Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal Nanostructure Chemistry, 9(1), 1–9. https://doi.org/10.1007/s40097-018-0291-4.

    Article  Google Scholar 

  22. Jian, W., Ma, Y., Wu, H., Zhu, X., Wang, J., Xiong, H., Lin, L., & Wu, L. (2019). Fabrication of highly stable silver nanoparticles using polysaccharide-protein complexes from abalone viscera and antibacterial activity evaluation. International Journal of Biological Macromolecules, 128, 839–847. https://doi.org/10.1016/j.ijbiomac.2019.01.197.

    Article  Google Scholar 

  23. Khan, T., Yasmin, A., & Townley, H. E. (2020). An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids and Surfaces, B: Biointerfaces, 194, 111156. https://doi.org/10.1016/j.colsurfb.2020.111156.

    Article  Google Scholar 

  24. Shah, M., Nawaz, S., Jan, H., Uddin, N., Ali, A., Anjum, S., Giglioli-Guivarc'h, N., Hano, C., & Abbasi, B. H. (2020). Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Materials Science and Engineering: C, 112, 110889. https://doi.org/10.1016/j.msec.2020.110889.

    Article  Google Scholar 

  25. Dipankar, C., & Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces, B: Biointerfaces, 98, 112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006.

    Article  Google Scholar 

  26. Feroze, N., Arshad, B., Younas, M., Afridi, M. I., Saqib, S., & Ayaz, A. (2020). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique, 83(1), 72–80. https://doi.org/10.1002/jemt.23390.

    Article  Google Scholar 

  27. Mani, M., Chang, J. H., Dhanesh Gandhi, A., Kayal Vizhi, D., Pavithra, S., Mohanraj, K., Mohanbabu, B., Babu, B., Balachandran, S., & Kumaresan, S. (2020). Environmental and biomedical applications of AgNPs synthesized using the aqueous extract of Solanum surattense leaf. Inorganic Chemistry Communications, 121, 108228. https://doi.org/10.1016/j.inoche.2020.108228.

    Article  Google Scholar 

  28. Korkmaz, N., Ceylan, Y., Hamid, A., Karadağ, A., Bülbül, A. S., Aftab, M. N., Çevik, Ö., & Şen, F. (2020). Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. Journal of Drug Delivery Science and Technology, 59, 101864. https://doi.org/10.1016/j.jddst.2020.101864.

    Article  Google Scholar 

  29. Lakhan, M. N., Chen, R., Shar, A. H., Chand, K., Shah, A. H., Ahmed, M., Ali, I., Ahmed, R., Liu, J., Takahashi, K., & Wang, J. (2020). Eco-friendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. Journal of Microbiological Methods, 173, 105934. https://doi.org/10.1016/j.mimet.2020.105934.

    Article  Google Scholar 

Download references

Funding

Mian Adnan Kakakhel is a recipient of Doctoral studies award at Lanzhou University by the Chinese Government Scholarship Council. Zaheer Ud Din was financially supported by the Young Doctors Cooperation Fund, Qilu University of Technology (Shandong Academy of Sciences) (Grant No. 2019BSHZ006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zaheer Ud Din.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakakhel, M.A., Saif, I., Ullah, N. et al. Waste Fruit Peel Mediated Synthesis of Silver Nanoparticles and Its Antibacterial Activity. BioNanoSci. 11, 469–475 (2021). https://doi.org/10.1007/s12668-021-00861-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00861-2

Keywords

Navigation