Skip to main content
Log in

Green Synthesis of Silver Nanoparticles Using Sapota Fruit Waste and Evaluation of Their Antimicrobial Activity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Green synthesis of spherical silver nanoparticles (AgNPs) by using sapota fruit pomace was carried out in the present study.

Methods

The extraction procedure for sapota pomace and reaction conditions were simple and convenient to handle and straightforwardly optimized using UV–Visible spectroscopy. The generated AgNPs were characterized using Fourier-transform infrared spectroscopy (FTIR). The morphology and crystalline phase of the AgNPs were determined from X-ray diffraction (XRD) spectroscopy and transmission electron microscopy (TEM).

Results

The spherical AgNPs synthesized after reduction with sapota pomace extract were biphasic in nature and displayed a particle size of 8–16 nm with moderate stability (Zeta potential of − 13.41).

Conclusions

AgNPs synthesized with sapota pomace extract showed good antibacterial properties against Gram-positive as well as Gram-negative microorganisms, comparable to reported literature. The results of this study promote a productive utilization of fruit waste for the synthesis of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nair, L.S., Laurencin, C.T.: Silver nanoparticles: synthesis and therapeutic applications. J. Biomed. Nanotechnol. 3, 301–316 (2007). https://doi.org/10.1166/jbn.2007.041

    Article  Google Scholar 

  2. Ganesan, R.M., Prabu, G.: H.: Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2014.12.017

    Google Scholar 

  3. Espitia, P.J.P., Soares, N., de F.F., Coimbra, J.S. dos R., de Andrade, Cruz, N.J., Medeiros, R.S..: Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5, 1447–1464 (2012). https://doi.org/10.1007/s11947-012-0797-6

    Article  Google Scholar 

  4. Rampino, A., Borgogna, M., Blasi, P., Bellich, B., Cesàro, A.: Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm. 455, 219–228 (2013). https://doi.org/10.1016/j.ijpharm.2013.07.034

    Article  Google Scholar 

  5. Sharma, V.K., Yngard, R.A., Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009). https://doi.org/10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  6. Othman, S.H.: Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Ital. Oral Surg. 2, 296–303 (2014). https://doi.org/10.1016/j.aaspro.2014.11.042

    Google Scholar 

  7. Bouvree, A., Feller, J.F., Castro, M., Grohens, Y., Rinaudo, M.: Conductive polymer nano-Biocomposites (CPC): chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sensors Actuators B. 138, 138–147 (2009). https://doi.org/10.1016/j.snb.2009.02.022

    Article  Google Scholar 

  8. Khan, A.U., Yuan, Q., Wei, Y., Khan, G.M., Khan, Z.U.H., Khan, S., Ali, F., Tahir, K., Ahmad, A., Khan, F.U.: Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J. Photochem. Photobiol. B. 162, 273–277 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.055

    Article  Google Scholar 

  9. Forough, M., Farhadi, K.: Biological and green synthesis of silver nanoparticles. Turkish J. Eng. Env. Sci. 34, 281–287 (2010). https://doi.org/10.3906/muh-1005-30

    Google Scholar 

  10. Amin, M., Anwar, F., Janjua, M.R.S.A., Iqbal, M.A., Rashid, U.: Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 13, 9923–9941 (2012). https://doi.org/10.3390/ijms13089923

    Article  Google Scholar 

  11. Saiqa Ikram, S.A.: Silver nanoparticles: one pot green synthesis using terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol. 6, 1–6 (2015). https://doi.org/10.4172/2157-7439.1000309

    Article  Google Scholar 

  12. Demirbas, A., Welt, B.A., Ocsoy, I.: Biosynthesis of red cabbage extract directed AgNPs and their effect on the loss of antioxidant activity. Mater. Lett. 179, 20–23 (2016). https://doi.org/10.1016/j.matlet.2016.05.056

    Article  Google Scholar 

  13. Sathishkumar, M., Sneha, K., Won, S.W., Cho, C.W., Kim, S., Yun, Y.S.: Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Coll. Surf. B. 73, 332–338 (2009). https://doi.org/10.1016/j.colsurfb.2009.06.005

    Article  Google Scholar 

  14. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., Sreedhar, B.: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C. 58, 36–43 (2016). https://doi.org/10.1016/j.msec.2015.08.018

    Article  Google Scholar 

  15. Jain, D., Daima, H.K., Kachhwaha, S., Kothari, S.L.: Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. J. Nanomater. Biostr. 4, 557–563 (2009)

    Google Scholar 

  16. Sesuvium, L., Nabikhan, A., Kandasamy, K., Raj, A., Alikunhi, N.M.: Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Coll. Surf. B. 79, 488–493 (2010). https://doi.org/10.1016/j.colsurfb.2010.05.018

    Article  Google Scholar 

  17. Jacob, J.P., Finub, S., Narayanan, J.S.: A.: Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Coll. Surf. B. 91, 212–214 (2012). https://doi.org/10.1016/j.colsurfb.2011.11.001

    Article  Google Scholar 

  18. Nadworny, P.L., Wang, J., Tredget, E.E., Burrell, R.E.: Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed. Nanotechnol. Biol. Med. 4, 241–251 (2008)

    Article  Google Scholar 

  19. Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

    Article  Google Scholar 

  20. Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z., Yu, C.P.: Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Coll. Surf. A. 444, 226–231 (2014). https://doi.org/10.1016/j.colsurfa.2013.12.065

    Article  Google Scholar 

  21. López-Miranda, J.L., Vázquez, M., Fletes, N., Esparza, R., Rosas, G.: Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater. Lett. 176, 285–289 (2016). https://doi.org/10.1016/j.matlet.2016.04.126

    Article  Google Scholar 

  22. Prasad, R.: Synthesis of silver nanoparticles in photosynthetic plants. J. Nanoparticles. 2014, 1–8 (2014)

  23. Malaka, R., Subramanian, S., Muthukumarasamy, N.P., Hema, J.A., Sevanan, M., Sambandam, A.: Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET Nanobiotechnol. 10, 288–294 (2016). https://doi.org/10.1049/iet-nbt.2015.0103

    Article  Google Scholar 

  24. Singh, P., Kim, Y.J., Zhang, D., Yang, D.C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016). https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  Google Scholar 

  25. Hadacek, F., Greger, H.: Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem. Anal. 11, 137–147 (2000)

    Article  Google Scholar 

  26. Wiegand, I., Hilpert, K., Hancock, R.E.W.: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008). https://doi.org/10.1038/nprot.2007.521

    Article  Google Scholar 

  27. Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U., Madhankumar, D.: One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Coll. Surf. B. 94, 114–117 (2012). https://doi.org/10.1016/j.colsurfb.2012.01.026

    Article  Google Scholar 

  28. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  29. Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M.: Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006). https://doi.org/10.1021/bp0501423

    Article  Google Scholar 

  30. Guzman, M., Dille, J., Godet, S.: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 8, 37–45 (2012). https://doi.org/10.1016/j.nano.2011.05.007

    Article  Google Scholar 

  31. Ahmed, S., Ikram, S., Ikram, S.: S.A.: Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol. 6, 1–6 (2015). https://doi.org/10.4172/2157-7439.1000309

    Google Scholar 

  32. Journal, A., Drzewiecka, W.W.: Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells. J. Biotechnol. Bioeng. 1, 1–7 (2014)

    Google Scholar 

  33. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W., Grobelny, J.: Detection limits of DLS and UV–Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 1–10 (2013. https://doi.org/10.1155/2013/313081

  34. Fissan, H., Ristig, S., Kaminski, H., Asbach, C., Epple, M.: Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods. 6, 7324–7334 (2014). https://doi.org/10.1039/C4AY01203H

    Article  Google Scholar 

  35. Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., Crittenden, J.C.: Stability of commercial metal oxide nanoparticles in water. Water Res. 42, 2204–2212 (2008). https://doi.org/10.1016/j.watres.2007.11.036

    Article  Google Scholar 

  36. Arunachalam, R., Dhanasingh, S., Kalimuthu, B., Uthirappan, M., Rose, C., Mandal, A.B.: Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Coll. Surf. B Biointerfaces. 94, 226–230 (2012). https://doi.org/10.1016/j.colsurfb.2012.01.040

    Article  Google Scholar 

  37. Martınez-Castanon, G., Nino-Martınez, N., Martınez-Gutierrez, F., Martınez-Mendoza, J., Ruiz, F.: Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 10, 1343–1348 (2008). https://doi.org/10.1007/s11051-008-9428-6

    Article  Google Scholar 

  38. Kameswara Srikar, S., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N.: Green Synthesis of Silver Nanoparticles: a Review. Green Sustain. Chem. 6, 34–56 (2016). https://doi.org/10.4236/gsc.2016.61004

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University Grants Commission (UGC) for providing the financial support for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Ananthanarayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwasrao, C., Momin, B. & Ananthanarayan, L. Green Synthesis of Silver Nanoparticles Using Sapota Fruit Waste and Evaluation of Their Antimicrobial Activity. Waste Biomass Valor 10, 2353–2363 (2019). https://doi.org/10.1007/s12649-018-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0230-0

Keywords

Navigation