Skip to main content
Log in

Fabrication of Cellulose Acetate/Polyaziridine Blended Flat Sheet Membranes for Dialysis Application

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Polyaziridine or polyetyleneimine (PEI) was introduced as filler in cellulose acetate (CA) to fabricate mixed matrix membrane (MMM) for hemodialysis. Diffusion-induced phase separation (DIPS) method was followed for making PEI/CA MMM membranes. Effect of variation in the amount PEI was also examined on the morphology and performance of CA membrane. The surface morphology of pure and MMM membranes was studied by SEM, AFM, contact angle, and FTIR. Results of all characterization techniques revealed homogenous and significant blending of PEI content into pure CA matrix. Moreover, performance efficiency of MMM membranes was investigated in terms of pure water flux (PWF), urea clearance, and bovine serum albumin (BSA) rejection. The concomitant decrease of contact angle from 78° to 69° in PEI/CA MMM membranes of varying composition successfully demonstrates enhancement in surface hydrophilicity of MMM membranes. For protein rejection, all PEI/CA MMM membranes rejected > 90% of BSA relative to 25% for pure CA membrane. Furthermore, urea clearance behavior for PEI/CA MMM membranes was 67.6% in comparison to 52% for pure CA membrane. The incorporation PEI appreciably enhanced the PWF, BSA rejection, and urea clearance of CA membrane for hemodialysis application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sajitha, C. J., & Mohan, D. (2005). Studies on cellulose acetate-carboxylated polysulfone blend ultrafiltration membranes. III. Journal of Applied Polymer Science, 97, 976–988.

    Article  Google Scholar 

  2. Aliane, A., Bounatiro, N., Cherif, A. T., & Akretche, D. E. (2001). Removal of chromium from aqueous solution by complexation ultrafiltration using awater-soluble macroligand. Water Research, 35, 2320–2326.

    Article  Google Scholar 

  3. Arthanareeswaran, G., Thanikaivelan, P., Srinivasn, K., & Mohan, D. (2004). Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. European Polymer Journal, 40, 2153–2159.

    Article  Google Scholar 

  4. Ma, H., Bowman, C. N., & Davis, R. H. (2000). Membrane fouling reduction by back-pulsing and surface modification. Journal of Membrane Science, 173, 191–200.

    Article  Google Scholar 

  5. Teatini, U., Liebchen, A., Nilsson, L. G., Beck, W., & Romei Longhena, G. (2016). Effect of a more permeable dialysis membrane on ESA resistance in hemodialysis patients- a pilot investigation. Blood Purification, 41, 80–86.

    Article  Google Scholar 

  6. Arindam, B., & Himadri, C. (2014). Assesment of rheological models for prediction of transport phenomena in stenosed artery. PCFD, 14, 6.

    MATH  Google Scholar 

  7. Bit, A., & Chattopadhyay, H. (2014). Numerical investigation of pulsatile flow in stenosed artery. Acta of Bioengineering and Biomechanics, 16, 33–44.

    Google Scholar 

  8. Gijsen, F. J. H., Van de Vosse, F. N., & Jansen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601–608.

    Article  Google Scholar 

  9. Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2005). Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir, 21, 5980–5987.

    Article  Google Scholar 

  10. Hayama, M., Yamamoto, K., Kohori, K., & Sakai, K. (2004). How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? Journal of Membrane Science, 234, 41–49.

    Article  Google Scholar 

  11. Dunweg, G., Lother, S., & Wolfgang, A. (1995). Dialysis membrane made of cellulose acetate. US Patent, 5, 403,485.

    Google Scholar 

  12. Ferjani, E., Lajimi, R. H., & Deratani, A. (2002). Bulk and surface modification of cellulose diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and characterization. Desalination, 146, 325–330.

    Article  Google Scholar 

  13. Qin, J. J., Oo, M. H., Cao, Y. M., & Lee, L. S. (2005). Development of a LCST membrane forming system for cellulose acetate ultrafiltration hollowfiber. Separation and Purification Technology, 42, 291–295.

    Article  Google Scholar 

  14. Qin, J. J., Li, Y., Lee, L. S., & Lee, H. (2003). Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water. Journal of Membrane Science, 218, 173–183.

    Article  Google Scholar 

  15. Nowak, K. M., Kowalska, I., & Korbutowicz, M. K. (2005). Ultrafiltration of SDS solutions using polymeric membranes. Desalination, 184, 415–422.

    Article  Google Scholar 

  16. Zularisam, A. W., Ismaila, A. F., Salimc, M. R., Sakinaha, M., & Ozakid, H. (2007). The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination, 212, 191–208.

    Article  Google Scholar 

  17. Ramírez, J. L. B., Oviedo, M. D. C., & Alonso, J. M. Q. (2006). Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination, 191, 137–147.

    Article  Google Scholar 

  18. Boricha, A. G., & Murthy, Z. V. P. (2010). Preparation of N, O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chemical Engineering Journal, 157, 393–400.

    Article  Google Scholar 

  19. Arockiasamy, D. L., Nagendran, A., Shobana, K. H., & Mohan, D. (2009). Preparation and characterization of cellulose acetate/aminated polysulfone blend ultrafiltration membranes and their application studies. Separation Science and Technology, 44, 398–421.

    Article  Google Scholar 

  20. Brousse, C. L., Chapurlat, R., & Quentin, J. P. (1976). New membranes for reverse osmosis. I. Characteristics of the base polymer: sulphonated polysulphones. Desalination, 18, 137–153.

    Article  Google Scholar 

  21. Brown, W., Henley, D., & Ohman, J. (1963). Studies on cellulose derivatives part I. The dimensions and configuration of sodium carboxymethyl cellulose in cadoxen and the influence of the degree of substitution. Die Makromolekulare Chemie. Rapid Communications, 62, 164–182.

    Article  Google Scholar 

  22. Cerqueira, D. A., Valente, A. J. M., Filho, G. R., & Burrows, H. D. (2009). Synthesis and properties of polyaniline-cellulose acetate blends: The use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate Polymers, 78, 402–408.

    Article  Google Scholar 

  23. Vijayalakshmi, A., Arockiasamy, D. L., Nagendran, A., & Mohan, D. (2008). Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Separation and Purification Technology, 62, 32–38.

    Article  Google Scholar 

  24. Rajesh, S., Maheswari, P., Senthilkμmar, S., Jayalakshmi, A., & Mohan, D. (2011). Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions. Chemical Engineering Journal, 171, 33–44.

    Article  Google Scholar 

  25. Sivakμmar, M., Mohansundaram, A. K., Mohan, D., Balu, K., & Rangarajan, R. (1998). Modification of CA: Its characterization and application as an UF membranes. Journal of Applied Polymer Science, 67, 1939–1946.

    Article  Google Scholar 

  26. Tatiana, K. Bronich. Nanomedicine: Nanotechnology, Biology and Medicine. Journal Elsevier. 12(8).

  27. Hou, J. Z., Xue, H. L., Li, L. L., Dou, Y. L., Wu, Z. N., & Zhang, P. P. (2016). Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polymer Bulletin, 73, 2889–2906.

    Article  Google Scholar 

  28. Velu, S., Muruganandam, L., & Arthanareeswaran, G. (2015). Preparation and performance studies on, polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery waste water. Brazilian Journal of Chemistry, 32, 179–189.

    Article  Google Scholar 

  29. Kee, C. M., & Idris, A. (2010). Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Separation and Purification Technology, 75, 102–113.

    Article  Google Scholar 

  30. Guan, R., Zou, H., Lu, D., Gong, C., & Liu, Y. (2005). Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. European Polymer Journal, 41, 1554–1560.

    Article  Google Scholar 

  31. Xu, Z. K., Nie, F. Q., Qu, C., Wan, L. S., Wu, J., & Yao, K. (2005). Tethering poly (ethylene glycol) s to improve the surface biocompatibility of poly (acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 26, 589–598.

    Article  Google Scholar 

  32. Chen, Z., Deng, M., Chen, Y., He, G., Wu, M., & Wang, J. (2004). Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. Journal of Membrane Science, 235, 73–86.

    Article  Google Scholar 

  33. Jia, Z., & Tian, C. (2009). Quantitative determination of polyethylene glycol with modified Dragendorff reagent method. Desalination, 247, 423–429.

    Article  Google Scholar 

  34. Senthilkumar, S., Rajesh, S., Mohan, D., & Soundararajan, P. (2013). Preparation, characterization, and performance evaluation of poly(ether-imide) incorporated cellulose acetate ultrafiltration membrane for hemodialysis. Separation Science and Technology, 48, 66–75.

    Article  Google Scholar 

  35. Joanna, R., Yurij, S., Kamil, A., Joanna, Z., Andrij, K., Khrystyna, H., Mateusz, M., Anderzej, B., Ostap, L., Halyna, O., & Andrzej, B. (2016). Temperature responsive properties of poly (4-vinylpyridine) coating: Influence of temperature on the wettability, morphology, and protein adsorption. RSC Advance, 90.

  36. Velu, S., Muruganandam, L., & Arthanareeswaran, G. (2015). Preperation and performance studies on polyethersulfone ultrafiltration membranesmodified with gelatin for treatmentof tannery and distillery wastewater. Brazilian Journal of Chemical Engineering, 32, 179–189.

    Article  Google Scholar 

  37. Idris, A., Yee, H. K., & Kee, C. M. (2009). Preparation of cellulose acetate dialysis membrane using D-glucose monohydrate as additive. Jurnal Teknologi, 51(F), Dis: 67–76.

    Google Scholar 

  38. Farrukh, S., Minhas, F. T., Hussain, A., Memon, S., Bhanger, M. I., & Mujahid, M. (2014). Preparation, characterization, and applicability of novel calix[4]arene-based cellulose acetate membranes in gas permeation. Journal of Applied Polymer Science, 131, 39985.

    Article  Google Scholar 

  39. Idris, A., Lee, K. Y., Noordin, M., & Chan, M. K. (2008). Response surface methodology approach to study the influence of PEG and water in cellulose acetate dialysis membranes. Jurnal Teknologi, 49F, 39–49.

    Google Scholar 

  40. Iwasaki, Y., Yamato, H., Nii-Kono, T., Fujieda, A., Uchida, M., Hosokawa, A., Motojima, M., & Fukagawa, M. (2006). Insufficiency of PTH action on bone in uremia. Journal of Bone and Mineral Metabolism, 24, 172–175.

    Article  Google Scholar 

  41. Sakai, K. (1994). Determination of pore size and pore distribution: 2. Dialysis membranes. Journal of Membrane Science, 96, 91–130.

    Article  Google Scholar 

  42. Lesaffer, G., Smet, R. D., Lameire, N., Dhondt, A., Duym, P., & Vanholder, P. (2000). Intradialytic removal of protein-bound uraemic toxins: Role of solute characteristics and of dialyser membrane. Nephrology, Dialysis, Transplantation, 15, 50–57.

    Article  Google Scholar 

  43. Vanholder, R. C., Smet, R. V. D., & Ringoir, S. (1992). Assessment of urea and other uremic markers for quantification of dialysis efficacy. Clinical Chemistry, 38, 1429–1436.

    Google Scholar 

  44. Eknoyan, G., Beck, G. J., Cheung, A. K., Daugirdas, J. T., Greene, T., Kusek, J. W., Allon, M., Bailey, J., Delmez, J. A., & Depner, T. A. (2002). Effect of Dialysis dose and membrane flux in maintenance hemodialysis. The New England Journal of Medicine, 347, 2010–2019.

    Article  Google Scholar 

  45. Irfan, M., Idris, A., Yusof, N. M., Khairuddin, N. F. M., & Akhmal, H. (2014). Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. Journal of Membrane Science, 467, 73–84.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan and Chemical Engineering Department of University of Waterloo, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hizba Waheed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, H., Hussain, A. Fabrication of Cellulose Acetate/Polyaziridine Blended Flat Sheet Membranes for Dialysis Application. BioNanoSci. 9, 256–265 (2019). https://doi.org/10.1007/s12668-019-0600-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-0600-5

Keywords

Navigation