Skip to main content

Advertisement

Log in

Synthesis, Characterization and Thermal Stability of Nanocrystalline MgAlMnFeCu Low-Density High-Entropy Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An equiatomic quinary MgAlMnFeCu high-entropy alloy (HEA) has been synthesized successfully by mechanical alloying (MA). Phase evolution of MgAlMnFeCu HEA has been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS/XEDS). Milling up to 60 h leads to the formation of a mixture of two phases consisting of a BCC phase (a = 2.87 ± 0.02 Å) and ϒ-brass-type phase (a = 8.92 ± 0.03 Å), with ~ 2 μm powder particle size. The as-milled alloy after spark plasma sintering (SPS) at 900 °C exhibits an experimental density of 4.946 ± 0.13 g cc−1, which is 99.80% of the theoretical density. SPS leads to the formation of C15 Laves phase (MgCu2-type; a = 7.034 ± 0.02 Å) and B2 (AlFe-type; (a = 2.89 ± 0.02 Å) intermetallic along with the ϒ-brass-type phase. The SPSed sample has exceptional hardness value (~ 5.06 GPa), high compressive strength (~ 1612 MPa) and appreciable failure strain (~ 6.4%) coupled with relatively low density. Various thermodynamic parameters have been considered for understanding the phase evolution and their stability during MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cantor B, Chang I T H, Knight P, Vincent A J B, Mater Sci Eng A 375–377 (2004) 213 https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  2. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y, Adv. Eng. Mater. 6 (2004) 299 https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  3. Senkov O N, Miracle D B, Chaput K J, and Couzinie J P, J Mater Res 33 (2018) 3092 https://doi.org/10.1557/jmr.2018.153.

    Article  CAS  Google Scholar 

  4. Gorsse S, Miracle D B, and Senkov O N, Acta Mater. 135 (2017) 177 https://doi.org/10.1016/j.actamat.2017.06.027.

    Article  CAS  Google Scholar 

  5. Miracle D B, and Senkov O N, Acta Mater. 122 (2017) 448 https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  6. Gao M C, JOM. 67 (2015) 2251 https://doi.org/10.1007/s11837-015-1609-z.

    Article  Google Scholar 

  7. Zhang Y, Zuo T T, Tang Z, Gao MC, Dahmen K A, Liaw P K, Lu Z P, Prog Mater Sci 61 (2014) 1 https://doi.org/10.1016/j.pmatsci.2013.10.001.

    Article  CAS  Google Scholar 

  8. Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, Srivastava O N, Philos Mag Lett 97 (2017) 494 https://doi.org/10.1080/09500839.2017.1418539.

    Article  CAS  Google Scholar 

  9. Shivam V, Basu J, Shadangi Y, Singh M K, Mukhopadhyay N K, J Alloys Compd 757 (2018) 87 https://doi.org/10.1016/j.jallcom.2018.05.057.

    Article  CAS  Google Scholar 

  10. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol. 29 (2018) 2221 https://doi.org/10.1016/j.apt.2018.06.006.

    Article  CAS  Google Scholar 

  11. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J. Mater. Res. 34 (2019) 787 https://doi.org/10.1557/jmr.2019.5.

    Article  CAS  Google Scholar 

  12. Sriharitha R, Murty B S, and Kottada R S, Intermetallics 32 (2013) 119 https://doi.org/10.1016/j.intermet.2012.08.015.

    Article  CAS  Google Scholar 

  13. Singh S, Wanderka N, Murty B S, Glatzel U, and Banhart J, Acta Mater 59 (2011) 182 https://doi.org/10.1016/j.actamat.2010.09.023.

    Article  CAS  Google Scholar 

  14. Mukhopadhyay N K, Curr. Sci. 109 (2015) 665.

    Article  Google Scholar 

  15. Pandey V K, Shivam V, Sarma B N, and Mukhopadhyay N K, Mater. Res. Express. 6 (2020) 1265b9 https://doi.org/10.1088/2053-1591/ab618f.

    Article  CAS  Google Scholar 

  16. Shivam V, Sanjana V, Mukhopadhyay N K, Trans. Indian Inst. Met 73 (2020) 821 https://doi.org/10.1007/s12666-020-01892-1.

    Article  CAS  Google Scholar 

  17. Murty B S, Yeh J W, Ranganathan P P, and Bhattacharjee S , High-Entropy Alloys, 2nd Edition, Elsevier, 2019. https://www.elsevier.com/books/high-entropy-alloys/murty/978-0-12-800251-3.

  18. Steurer W, Mater. Charact. 162 (2020) 110179 https://doi.org/10.1016/j.matchar.2020.110179.

    Article  CAS  Google Scholar 

  19. Kokai T, Yachu Y, Chienchang J, Tsungshune C, Chewei T, and Jienwei Y, Sci China Tech Sci. 61 (2018) 184 https://doi.org/10.1007/s11431-017-9073-0.

    Article  CAS  Google Scholar 

  20. Yang X, Chen S Y, Cotton J D, and Zhang Y, JOM. 66 (2014) 2009. https://doi.org/10.1007/s11837-014-1059-z.

    Article  CAS  Google Scholar 

  21. Youssef K M, Zaddach A J, Niu C, Irving D L, and Koch C C, Mater Res Lett 3 (2014) 95 https://doi.org/10.1080/21663831.2014.985855.

    Article  CAS  Google Scholar 

  22. Gao M C, Zhang B, Guo S M, Qiao J W, and Hawk J A, Metall Mater Trans A 47 (2016) 3322. https://doi.org/10.1007/s11661-015-3091-1.

    Article  CAS  Google Scholar 

  23. Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, and Qin L, Acta Biomater. 9 (2013) 8561. https://doi.org/10.1016/j.actbio.2013.01.029.

    Article  CAS  Google Scholar 

  24. Li R, Gao J C, and Fan K, Mater Sci Forum 650 (2010) 265. https://doi.org/10.4028/www.scientific.net/msf.650.265.

    Article  CAS  Google Scholar 

  25. Li R, Gao J C, and Fan K, Mater Sci Forum 686 (2011) 235. https://doi.org/10.4028/www.scientific.net/msf.686.235.

    Article  CAS  Google Scholar 

  26. Feng R, Gao M C, Zhang C, Guo W, PoplawskyJ D, Zhang F, Hawk J A, Neuefeind J C, Ren Y, and Liaw P K, Acta Mater 146 (2018) 280 https://doi.org/10.1016/j.actamat.2017.12.061.

    Article  CAS  Google Scholar 

  27. Chen Y L, Tsai C W, Juan C C, Chuang M H, Yeh J W, Chin T S, and Chen S K, J. Alloys Compd 506 (2010) 210 https://doi.org/10.1016/j.jallcom.2010.06.179.

    Article  CAS  Google Scholar 

  28. Sanchez J M, Vicario I, Albizuri J, Guraya T, and Garcia J C, J Mater Res Technol 8 (2019) 795. https://doi.org/10.1016/j.jmrt.2018.06.010.

    Article  CAS  Google Scholar 

  29. Senkov O N, Senkova S V, Woodward C, Miracle D B, Acta Mater. 61 (2013) 1545. https://doi.org/10.1016/j.actamat.2012.11.032.

    Article  CAS  Google Scholar 

  30. Senkov O N, Senkova S V, Miracle D B, and Woodward C, Mater Sci Eng A 565 (2013) 51. https://doi.org/10.1016/j.msea.2012.12.018.

    Article  CAS  Google Scholar 

  31. Stepanov N D, Shaysultanov D G, Salishchev G A, and Tikhonovsky M A, Mater Lett 142 (2015) 153. https://doi.org/10.1016/j.matlet.2014.11.162.

    Article  CAS  Google Scholar 

  32. Stepanov N D, Yurchenko N Y, Sokolovsky V S, Tikhonovsky M A, and Salishchev G A, Mater. Lett. 161 (2015) 136. https://doi.org/10.1016/j.matlet.2015.08.099.

    Article  CAS  Google Scholar 

  33. Khanchandani H, Sharma P, Kumar R, Maulik O, and Kumar V, Adv Powder Technol. 27 (2016) 289. https://doi.org/10.1016/j.apt.2016.01.001.

    Article  CAS  Google Scholar 

  34. Maulik O, and Kumar V, Mater Charact 110 (2015) 116. https://doi.org/10.1016/j.matchar.2015.10.025.

    Article  CAS  Google Scholar 

  35. Maulik O, Kumar D, Kumar S, Fabijanic D M, and Kumar V, Intermetallics 77 (2016) 46. https://doi.org/10.1016/j.intermet.2016.07.001.

    Article  CAS  Google Scholar 

  36. Miedema A R, de Châtel P F, de Boer F R, Phys. B + C 100 (1980) 1. https://doi.org/10.1016/0378-4363(80)90054-6

    Article  CAS  Google Scholar 

  37. Williamson G, and Hall W, Acta Metall 1 (1953) 22 https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  CAS  Google Scholar 

  38. Mao P, Yu B, Liu Z, Wang F, and Ju Y, Trans Nonferrous Met Soc China 24 (2014) 2920. https://doi.org/10.1016/s1003-6326(14)63427-0.

    Article  CAS  Google Scholar 

  39. Maulik O, Kumar D, Kumar S, Dewangan S K, and Kumar V, Mater. Res. Express. 5 (2018) 052001 10.1088/2053-1591/aabbca.

    Article  CAS  Google Scholar 

  40. Chen Y L, Hu Y H, Hsieh C A, Yeh J W, and Chen S K, J Alloys Compd 481 (2009) 768 https://doi.org/10.1016/j.jallcom.2009.03.087.

    Article  CAS  Google Scholar 

  41. Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534. https://doi.org/10.1002/adem.200700240.

    Article  CAS  Google Scholar 

  42. Guo S, and Liu C T, Prog Nat Sci Mater Int 21 (2011) 433 https://doi.org/10.1016/s1002-0071(12)60080-x.

    Article  Google Scholar 

  43. Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233 https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Profs. S Lele, R K Mandal, B S Murty and Dr. B Mukherjee for many stimulating discussions. The authors also thank Dr. R Manna for extending the facilities of the Advanced Research Centre for Iron and Steel (ARCIS) as its Coordinator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V.K., Shadangi, Y., Shivam, V. et al. Synthesis, Characterization and Thermal Stability of Nanocrystalline MgAlMnFeCu Low-Density High-Entropy Alloy. Trans Indian Inst Met 74, 33–44 (2021). https://doi.org/10.1007/s12666-020-02114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02114-4

Keywords

Navigation