Skip to main content
Log in

Structural, mechanical and magnetic properties of Fe — 40-at.% Al powders during mechanical alloying

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nanocrystalline Fe — 40at.% Al alloy powders were prepared by using a mechanical alloying (MA) process with a planetary high-energy ball mill. The structural and the morphological properties of the powders were investigated by means of X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. A disordered Fe(Al) solid solution with bcc crystal structure was formed after 10 h of MA. Longer MA durations introduced ordering in the alloyed powders. The final crystallite size was found to be as small as 5 nm whereas the internal strain was found to reach a final value of 2.1%. Also, the lattice parameter quickly increased to a maximum value of 0.2926 nm at 30 h of MA, and then decreased to a value of 0.2873 at 80 h of MA. SEM results showed variations in the shapes and the sizes of the particles in the powders at different stages. Furthermore, the microhardness values were found to increase gradually with increasing MA time due to work hardening, grain refinement and solid-solution formation. Magnetic properties such as the saturation magnetization (Ms) and the coercive field (Hc) were calculated from the hysteresis loops, and the results are presented as functions of the MA time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. George and I. Baker, The Encyclopedia of Materials: Science and Technology (Elsevier Press, Oxford, 2001), p. 4201.

    Book  Google Scholar 

  2. L. D’Angelo, L. D’Onofrio and G. Gonzalez, J. Alloys Comp. 483, 154 (2009)

    Article  Google Scholar 

  3. H. Wu, I. Baker, Y. Liu, X. Wu and J. Cheng, Intermetallics 19, 1517 (2011).

    Article  Google Scholar 

  4. M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Alloys Comp. 509, 3293 (2011).

    Article  Google Scholar 

  5. F. Hadef, A. Otmani, A. Djekoun and J. M. Greneche, J. Magn. Magn. Mater. 326, 261 (2013).

    Article  ADS  Google Scholar 

  6. M. Krifa, M. Mhadhbi, L. Escoda, J. M. Guell, J. J. Sunol, N. Llorca-Isern, C. Artieda-Guzman and M. Khitouni, J. Alloys Comp. 554, 51 (2013).

    Article  Google Scholar 

  7. N. Boukherroub, A. Guittoum, N. Souami, K. Akkouche and S. Boutarfaia, EPJ Web Conf. 29, 00010 (2012).

    Article  Google Scholar 

  8. E. Menendez, J. Sort, M. O. Liedke, J. Fassbender, S. Surinach, M. D. Baro and J. Nogues, New J. Phys. 10, 103030 (2008).

    Article  ADS  Google Scholar 

  9. R. Bernal-Correa, A. Rosales-Rivera, P. Pineda-Gomez and N. A. Salazar, J. Alloys Comp. 495, 491 (2010).

    Article  Google Scholar 

  10. Y. Jiraskova, J. Bursik, J. Cizek and D. Jancik, J. Alloys Comp. 568, 106 (2013).

    Article  Google Scholar 

  11. C. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  12. M. Gogebakan and B. Avar, Mater. Sci. Tech. 26, 920 (2010).

    Article  Google Scholar 

  13. M. Gogebakan and B. Avar, Pramana J. Phys. 77, 735 (2011).

    Article  ADS  Google Scholar 

  14. F. Hadef, A. Otmani, A. Djekoun and J. M. Greneche, Super Microstruct. 49, 654 (2011).

    Article  ADS  Google Scholar 

  15. Z. Hamlati, A. Guittoum, S. Bergheul, N. Souami, K. Taibi and M. Azzaz, J. Mater. Eng. Perform. 21, 1943 (2012).

    Article  Google Scholar 

  16. M. Krifa, M. Mhadhbi, L. Escoda, J. M. Guell, J. J. Sunol, N. Llorca-Isern, C. Artieda-Guzman and M. Khitouni, Powder Tech. 246, 117 (2013).

    Article  Google Scholar 

  17. K. Wolski, G. Le Caer, P. Delcroix, R. Fillit, F. Thevenot and J. Le Coze, Mater. Sci. Eng. A 207, 97 (1996).

    Article  Google Scholar 

  18. X. Amils, J. Nogues, S. Surinach, M. D. Baro, M. A. Munoz-Morris and D. G. Morris, Intermetallics 8, 805 (2000).

    Article  Google Scholar 

  19. Q. Zeng, I. Baker, Intermetallics 14, 396 (2006).

    Article  Google Scholar 

  20. J. Nogues et al., Phys. Rev. B 74, 024407 (2006).

    Article  ADS  Google Scholar 

  21. H. Shokrollahi, Mater. Des. 30, 3374 (2009).

    Article  Google Scholar 

  22. L. E. Zamora, G. A. P. Alcazar, G. Y. Velez, J. D. Betancur, J. F. Marco, J. J. Romero, A. Martinez, F. J. Palomares and J. M. Gonzalez, Phys. Rev. B 79, 094418 (2009).

    Article  ADS  Google Scholar 

  23. MDI Jade Software, XRD pattern processing, Material Data Inc. Livermare CA, USA.

  24. M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Nanomater. 2010, 712407 (2010).

    Google Scholar 

  25. M. Kezrane, A. Guittoumb, N. Boukherroubc, S. Lamranic and T. Sahraoui, J. Alloys Comp. 536S, 304 (2012).

    Article  Google Scholar 

  26. M. M. Rajath Hegde and A. O. Surendranathan, Powder Metall. Metal Ceram. 48, 641 (2009).

    Article  Google Scholar 

  27. M. H. Enayati, G. R. Aryanpour and A. Ebnonnasir, Int. J. Ref. Met. Hard. Mater. 27, 159 (2009).

    Article  Google Scholar 

  28. Z. Hamlati, A. Guittoum, S. Bergheul, N. Souami, K. Taibi and M. Azzaz, Adv. Mater. Res. 214, 490 (2011).

    Article  Google Scholar 

  29. M. Khajepour and S. Sharafi, Powder Tech. 232, 124 (2012).

    Article  Google Scholar 

  30. M. Rafiei, M. H. Enayati and F. Karimzadeh, J. Mater. Sci. 45, 4058 (2010).

    Article  ADS  Google Scholar 

  31. M. A. Morris-Munoz, A. Dodge and D. G. Morris, Nanostruct. Mater. 11, 873 (1999).

    Article  Google Scholar 

  32. M. Krasnowski and T. Kulik, Intermetallics 15, 201 (2007).

    Article  Google Scholar 

  33. B. Song, S. Dong, P. Coddet, H. Liao and C. Coddet, Surf. Coat. Technol. 206, 4704 (2012).

    Article  Google Scholar 

  34. S. Izadi, G. H. Akbari and K. Janghorban, J. Alloys Comp. 496, 699 (2010).

    Article  Google Scholar 

  35. J. A. Plascak, L. E. Zamora and G. A. P. Alcazar, Phys. Rev. B 61, 3188 (2000).

    Article  ADS  Google Scholar 

  36. N. Bensebaa, N. Loudjani, S. Alleg, L. Dekhil, J. J. Sunol, M. Al Sae and M. Bououdina, J. Magn. Magn. Mater. 349, 51 (2014).

    Article  ADS  Google Scholar 

  37. A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia and D. Lacour, J. Magn. Magn. Mater. 320, 1385 (2008).

    Article  ADS  Google Scholar 

  38. A. H. Bahrami, H. Ghayour and S. Sharafi, Powder Tech. 249, 7 (2013).

    Article  Google Scholar 

  39. A. Sharifati, S. Sharafi, Mater. Des. 41, 8 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Avar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avar, B., Gogebakan, M., Ozcan, S. et al. Structural, mechanical and magnetic properties of Fe — 40-at.% Al powders during mechanical alloying. Journal of the Korean Physical Society 65, 664–670 (2014). https://doi.org/10.3938/jkps.65.664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.664

Keywords

Navigation