Skip to main content

Advertisement

Log in

Groundwater suitability for drinking and agriculture purposes using irrigation water quality index and multivariate analysis: case of Sidi Bouzid aquifer, central Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Sidi Bouzid region is one of the main centers of agricultural production in Tunisia, especially for vegetable crops (18% of national production), arboriculture (13% of almond production and 10% of olive oil), and milk production (125 million liters in 2012 around 12% of national production) [PREDD (Plan Regional d’Environnement et de Développement Durable du gouvernorat de Sidi Bouzid), 2014]. Therefore, the groundwater quality of Sidi Bouzid aquifer was studied to evaluate the quality of the hydrochemical parameters to determine its suitability for both agricultural and drinking purposes. Thirty groundwater samples were collected and analyzed. The obtained results showed that the groundwater contains high values of dissolved ions dominated by SO4, Mg and Ca. Gypsum, anhydrite and halite dissolution, as well as direct and reverse ion exchange are the main processes of chemical evolution in the Sidi Bouzid aquifer. Multivariate statistical techniques, such as PCA and HCA, helped to focus on the hidden yet important variables and understand their roles in affecting the groundwater quality. Compared to the World Health Organization (Guidelines for drinking water quality, 3rd edn, vol 1. Recommendations. WHO, Geneva, 2008) and National Water Exploitation and Distribution Company SO.N.E.D.E (NT.09.14) guidelines for drinking water, results showed that the concentrations of major and trace elements were within the admissible concentration rate. Chemical indices such as the percentage of sodium (Na%), sodium adsorption ratio (SAR), Kelly’s ratio, and permeability index (PI) showed that more than 70% of the analyzed samples can be used for irrigation. The irrigation water quality index (IWQI) classes vary from severe (SR) to moderate restriction (MR). The visualization of the IWQI distributions, using GIS software, shows that the moderate restriction class (MR) is the dominant class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amouri M (1994) Etude hydrogéologique du système aquifère de Sidi Bouzid. Rapport de Direction Générale des Ressources en Eau (DGRE)

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 536

    Google Scholar 

  • Aydi W, Saidi S, Chalbaoui M, Chaibi S, Ben Dhia H (2013) Evaluation of the groundwater vulnerability to pollution using an intrinsic and a specific method in a GIS environment: application to the plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38:1815–1831. https://doi.org/10.1007/s13369-012-0417-9

    Article  Google Scholar 

  • Bahir M, Carreira PM, Ouhamdouch S, Chamchati H (2017) Recharge conceptual model and mineralization of groundwater in a semi-arid region; Essaouira Basin (Morocco). Procedia Earth Planet Sci 17:69–72. https://doi.org/10.1016/j.proeps.2016.12.036

    Article  Google Scholar 

  • Belkhiri L, Mouni L (2012) Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria. Appl Water Sci 2:127–133. https://doi.org/10.1007/s13201-012-0033-6

    Article  Google Scholar 

  • Ben Alaya M, Abidi S, Zemni T, Zargouni F (2014) Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environ Earth Sci 71:3387–3421

    Article  Google Scholar 

  • Biswas SN, Mohabey H, Malik ML (2002) Assessment of the irrigation water quality of river Ganga in Haridwar District. Asian J, Chem., p 16

    Google Scholar 

  • Brahim FB, Bouri S, Khanfir H (2013) Hydrochemical analysis and evaluation of groundwater quality of a Mio-Plio-Quaternary aquifer system in an arid regions: case of El Hancha, Djebeniana and El Amra regions, Tunisia. Arab J Geosci 6(6):2089–2102. https://doi.org/10.1007/s12517-011-0481-6

    Article  Google Scholar 

  • Charlet L, Blancho F, Bonnet T, Garambois S, Boivin P, Ferber T, Guedron S (2017) Industrial mercury pollution in a mountain valley: a combined geophysical and geochemical study. Procedia Earth Planet Sci 17:77–80. https://doi.org/10.1016/j.proeps.2016.12.040

    Article  Google Scholar 

  • Davis SN, DeWiest RJ (1966) Hydrogeology. Wiley, New York

    Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. Water Science and Engineering Paper 4001, California, Department of Water Sciences and Engineering, University of California

  • El Mejri H, Ben Moussa A, Zouari K (2014) The use of hydrochemical and environmental isotopic tracers to understand the functioning of the aquifer system in the Bou Hafna and Haffouz regions, Central Tunisia. Quatern Int 338:88–98. https://doi.org/10.1016/j.quaint.2014.04.046

    Article  Google Scholar 

  • El-Sayed SA, Morsy SM, Zakaria KM (2018) Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt. J Afr Earth Sci 142:82–92. https://doi.org/10.1016/j.jafrearsci.2018.03.001

    Article  Google Scholar 

  • Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis. Quality and quantity, vol 14. http://doi.org/10.1007/BF00154794

    Article  Google Scholar 

  • Farid I, Trabelsi R, Zouari K, Beji R (2013a) Geochemical and isotopic study of surface and groundwaters in Ain Bou Mourra basin, central Tunisia. Quatern Int 303:210–227. https://doi.org/10.1016/j.quaint.2013.04.021

    Article  Google Scholar 

  • Farid I, Zouari K, Abid K, Ayachi M (2013b) Hydrogeochemical investigation of surface and groundwater composition in an irrigated land in Central Tunisia. J Afr Earth Sci 78:16–27. https://doi.org/10.1016/j.jafrearsci.2012.10.001

    Article  Google Scholar 

  • Farid I, Zouari K, Rigane A, Beji R (2015) Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: case of Chougafiya basin (Central Tunisia). J Hydrol 530:508–532. https://doi.org/10.1016/j.jhydrol.2015.10.009

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Am Assoc Adv Sci Stable 170(3962):1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Gowrisankar G, Jagadeshan G, Elango L (2017) Managed aquifer recharge by a check dam to improve the quality of fluoride-rich groundwater: a case study from southern India. Environ Monit Assess 189(4):1–13. https://doi.org/10.1007/s10661-017-5910-x

    Article  Google Scholar 

  • Hamdi M, Zagrarni MF, Jerbi H, Tarhouni J (2018) Hydrogeochemical and isotopic investigation and water quality assessment of groundwater in the Sisseb El Alem Nadhour Saouaf aquifer (SANS), northeastern Tunisia. J Afr Earth Sci 141:148–163. https://doi.org/10.1016/j.jafrearsci.2017.11.035

    Article  Google Scholar 

  • Hamed Y, Ahmadi R, Demdoum A, Bouri S, Gargouri I, Ben Dhia H, Al-Gamal S, Laouar R, Choura A (2014) Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-southern Tunisia. J Afr Sci 100:418–436

    Google Scholar 

  • Hamzaoui-Azaza F, Ketata M, Bouhlila R, Gueddari M (2011) Hydrochemical evolution and evolution of drinking water quality in Zeuss-Koutine aquifer, south-eastern of Tunisia. Environ Monit Assess 174:283–298

    Article  Google Scholar 

  • Hamzaoui-Azaza F, Ameur M, Bouhlila R, Gueddari M (2012) Geochemical characterization of groundwater in a Miocene aquifer, southeastern Tunisia. Environ Eng 18:159–174

    Google Scholar 

  • Hamzaoui-Azaza F, Tlili-Zrelli B, Bouhlila R, Gueddari M (2013) An integrated statistical methods and modeling minerals-water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chem Spec 25(3):165–178

    Google Scholar 

  • Hassen I, Gibson H, Hamzaoui-Azaza F, Negro F, Rachid K, Bouhlila R (2016a) 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: new insights into aquifer-geometry and interconnections for a better assessment of groundwater resources. J Hydrol 539:223–236. https://doi.org/10.1016/j.jhydrol.2016.05.034

    Article  Google Scholar 

  • Hassen I, Hamzaoui-Azaza F, Bouhlila R (2016b) Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ Monit Assess 188(3):135. https://doi.org/10.1007/s10661-016-5124-7

    Article  Google Scholar 

  • Hassen I, Hamzaoui-Azaza F, Bouhlila R (2018) Establishing complex compartments-aquifers connectivity via geochemical approaches towards hydrogeochemical conceptual model: Kasserine Aquifer System, Central Tunisia. J Geochem Explor 188(2017):257–269. https://doi.org/10.1016/j.gexplo.2018.01.025

    Article  Google Scholar 

  • Hem JD (1991) Study and interpretation of the chemical characteristics of natural waters, 3rd edn. Scientific, Jodhpur (Book 2254)

    Google Scholar 

  • Ibn Ali Z, Frika Y, Ghzel LL, Zairi M (2017) Hydrogeochemical characteristics prediction using multiple linear regression: case study on unconfined aquifer in northeastern Tunisia. Arab J Geosci. https://doi.org/10.1007/s12517-017-3170-2

    Article  Google Scholar 

  • Jalali M (2007) Stalinization of groundwater in arid and semiarid zones: an example from Tajarak, western Iran. Environ Geol 52:1133–1149

    Article  Google Scholar 

  • Kaown D, Koh D-C, Mayer B, Lee K-K (2009) Identification of nitrate and sulphate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agric Ecosyst Environ 132(3–4):223–231

    Article  Google Scholar 

  • Kelly WP (1951) Alkali soils—their formation, properties and reclamation. Reinhold Publ, New York

    Google Scholar 

  • Kelly WR (2015) Groundwater geochemistry and isotopes. Groundwater. https://doi.org/10.1111/gwat.12377

    Article  Google Scholar 

  • Khazri D, Gabtni H (2018) Geophysical methods integration for deep aquifer reservoir characterization and modeling (Sidi Bouzid basin, central Tunisia). J Afr Earth Sci 138:289–308. https://doi.org/10.1016/j.jafrearsci.2017.11.024

    Article  Google Scholar 

  • Koh D-C, Mayer B, Lee K-S, Ko K-S (2010) Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. J Contam Hydrol 118:62–78

    Article  Google Scholar 

  • Kolsi SH, Bouri S, Hachicha W, Dhia H Ben (2013) Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: a case study of Hajeb Elyoun-Jelma, Central Tunisia. Environ Earth Sci 70:2215–2224. https://doi.org/10.1007/s12665-013-2377-0

    Article  Google Scholar 

  • KyameAsare-Donkor N, Opoku Ofosu J, ApekeAdimado A (2018) Hydrochemical characteristics of surface water and ecological risk assessment of sediments from settlements within the Birim River basin in Ghana. Environ Syst Res 7:1–17. https://doi.org/10.1186/s40068-018-0113-1

    Article  Google Scholar 

  • Li X, Wu H, Qian H, Gao Y (2018) Groundwater chemistry regulated by hydrochemical processes and geological structures: a case study in Tongchuan, China. Water (Switzerland). https://doi.org/10.3390/w10030338

    Article  Google Scholar 

  • Martine K, Mamadou N, Oumar T, Lucien B (2018) Hydrochemical characteristics of Djirwal groundwater in Burkina Faso. Res J Chem Sci 8(3):1–10

    Google Scholar 

  • Meireles ACM, Andrade EM, Chaves LCG, Frischkorn H, Crisóstomo LA (2010) A new proposal of the classification of irrigation water. Revista Ciencia Agronomica 41(3):349–357

    Article  Google Scholar 

  • Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Sâad A (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: northern Gafsa basin—Central Tunisia. J Afr Earth Sci 114:174–191. https://doi.org/10.1016/j.jafrearsci.2015.11.010

    Article  Google Scholar 

  • Noshadi M, Ghafourian A (2016) Groundwater quality analysis using multivariate statistical techniques (case study: Fars province. Environ Monit Assess, Iran). https://doi.org/10.1007/s10661-016-5412-2

    Book  Google Scholar 

  • Ouelhazi H, Lachaal F, Charef A, Challouf B, Chaieb H, Horriche FJ (2014) Hydrogeological investigation of groundwater artificial recharge by treated wastewater in semi-arid regions: Korba aquifer (Cap-Bon Tunisia). Arab J Geosci 7(10):4407–4421. https://doi.org/10.1007/s12517-013-1090-3

    Article  Google Scholar 

  • Panno SV, Hackley K, Hwang HH, Greenberg S, Krapac IG, Landsberger S, O’Kelly DJ (2002) Source identification of sodium and chloride contamination in natural waters: preliminary results. Water 22:1–25

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geo- chemical calculations, USGS WRI Report 99–4259, Washington DC

  • Piper AM (1994) A geographic procedure in the geo-chemical interpretation of water analysis. Transaction-American Geophysical Union, 25, 914–928, Washington, DC

  • Postma D, Trang PTK, Sø HU, Lan VM, Jakobsen R (2017) Reactive transport modeling of arsenic mobilization in groundwater of the red stream floodplain, Vietnam. Procedia Earth Planet Sci 17:85–87. https://doi.org/10.1016/j.proeps.2016.12.003

    Article  Google Scholar 

  • PREDD (Plan Regional d’Environnement et de Développement Durable du gouvernorat de Sidi Bouzid (2014) Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

  • Ragunath HM (1987) Groundwater, 2nd edn. Wiley Eastern Ltd, New Delhi

    Google Scholar 

  • Ravikumar P, Venkatesharaju K, Prakash KL, Somashekar RK (2011) Geochemistry of groundwater and groundwater prospects evaluation, Anekal Taluk, Bangalore Urban District, Karnataka, India. Environ Monit Assess 179(1–4):93–112. https://doi.org/10.1007/s10661-010-1721-z

    Article  Google Scholar 

  • Rezaei A, Hassani H (2017) Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan, Iran. Environ Geochem Health. https://doi.org/10.1007/s10653-017-0003-x

    Article  Google Scholar 

  • Richard LA (1954) Diagnosis and improvement of saline and alkaline soils. Agricultural, Handbook 60. US Department of Agriculture, Washington, DC, p 160

  • Rokbani MK, Gueddari N, Bouhlila R (2011) Use of geographical information system and water quality index to assess groundwater quality in El Khairat Deep Aquifer (Enfidha, Tunisian Sahel). Iran J Energy Environ 2(2):133–144

    Google Scholar 

  • Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42:195–209

    Article  Google Scholar 

  • Schoeller H (1977) Geochemistry of Groundwater. In: Brown RH, Konoplyantsev AA, Ineson J, Kovalevsky VS (eds) Groundwater studies: an international guide for research and practice. UNESCO, Paris, pp 1–18

    Google Scholar 

  • Semar A, Saibi H, Medjerab A (2013) Contribution of multivariate statistical techniques in the hydrochemical evaluation of groundwater from the Ouargla phreatic aquifer in Algeria. Arab J Geosci 6(9):3427–3436. https://doi.org/10.1007/s12517-012-0616-4

    Article  Google Scholar 

  • Shahab A, Qi S, Zaheer M, Rashid A, Talib MA, Ashraf U (2018) Hydrochemical characteristics and water quality assessment for drinking and agricultural purposes in District Jacobabad, lower Indus Plain, Pakistan. Int J Agric Biol Eng 11(2):115–121. https://doi.org/10.25165/j.ijabe.20181102.2747

    Article  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji stream basin, Japan. Environ Model Softw 22:464–475

    Article  Google Scholar 

  • Simler R (2000) Logiciel d’hydrochimie. Diagrammes (v5.0). Laboratoire d’Hydrogéologie d’Avignon

  • Simonot M (1995) Plaine de Sidi Bouzid : Etude de l’impact de l’épan- dage des crues sur le recharge de la nappe phréatique. Rapport Direction Générale des Ressources en Eaux (DGRE)

  • Smida H (2008) Apports des Systèmes d’Informations Géographiques (SIG) pour une approche intégrée dans l’étude et la gestion des ressources en eau des systèmes aquifères de la région de Sidi Bouzid (Tunisie centrale). Thèse Troisième Cycle, Université de Sfax, Tunisie

  • Subba Rao N, Surya Rao P, VenktramReddy G, Nagamani M, Vidyasagar G, Satyanarayana NLVV (2012) Chemical characteristics of groundwater and assessment of groundwater quality in Varaha Stream Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 184(8):5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Trabelsi N, Triki I, Hentati I, Zairi M (2016a) Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWI and GIS: case of a coastal aquifer in Tunisia. Environ Earth Sci 75(8):1–19. https://doi.org/10.1007/s12665-016-5459-y

    Article  Google Scholar 

  • Trabelsi N, Triki I, Hentati I, Zairi M (2016b) Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWIand GIS: case of a coastal aquifer in Tunisia. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5459-y

    Article  Google Scholar 

  • U.S. Geological Survey (2006) Mineral commodity summaries 2006. Mineral Commodity Summaries, 199

  • Usman UN, Toriman ME, Juahir H (2014) Assessment of groundwater quality using multivariate statistical techniques in Terengganu. Sci Technol 4(3):42–49. https://doi.org/10.5923/j.scit.20140403.02

    Article  Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Prasanna MV (2012) Evaluation of groundwater suitability for domestic, irrigational, and industrial purposes: a case study from Thirumanimuttarstream basin, Tamilnadu, India. Environ Monit Assess 184(1):405–420. https://doi.org/10.1007/s10661-011-1977-y

    Article  Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA, Circular 969, Washington, DC

  • World Health Organization (WHO) (2008) Guidelines for drinking water quality, vol 1, 3rd edn. Recommendations. WHO, Geneva

    Google Scholar 

  • Yakirevich A, Weisbrod N, Kuznetsov M, Rivera Villarreyes CA, Benavent I, Chavez AM, Ferrando D (2013) Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the Alto Piura aquifer, Peru. J Hydrol 482:25–39. https://doi.org/10.1016/j.jhydrol.2012.12.029

    Article  Google Scholar 

  • Yangui H, Zouari K, Trabelsi R, Rozanski K (2011) Recharge mode and mineralization of groundwater in a semi-arid region: Sidi Bouzid plain (central Tunisia). Environ Earth Sci 63:969–979. https://doi.org/10.1007/s12665-010-0771-4

    Article  Google Scholar 

  • Yidana SM, Yidaa A (2010) An assessment of the origin and variation of groundwater salinity in southeastern Ghana. Environm Earth Sci 61:1259–1273

    Article  Google Scholar 

  • Yousefi H, Zahedi S, Niksokhan MH (2018) Modifying the analysis made by water quality index using multi-criteria decision making methods. J Afr Earth Sci 138:309–318. https://doi.org/10.1016/j.jafrearsci.2017.11.019

    Article  Google Scholar 

  • Zouaghi T (2008) Distribution des séquences de dépot du Crétacé (Aptien-Maas- trichtien) en subsurface: role de la déformationtectonique, l’halocinése et évolutiongéodynamique (Atlas central de Tunisie). Ph.D. thesis, Universitéde Tunis El Manar

Download references

Acknowledgements

This study was supported by laboratory of water, energy and environment (LR3E) in the National School of Engineers of Sfax (ENIS). The authors gratefully thank the laboratory (LARSEN) for its contribution to the analysis of major and trace elements. The authors warmly thank the Higher Institute of Technological Studies of Sidi Bouzid (ISET) and the Regional Direction of Agriculture and Water Resources of Sidi Bouzid (CRDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Gharbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, A., Ali, Z.I. & Zairi, M. Groundwater suitability for drinking and agriculture purposes using irrigation water quality index and multivariate analysis: case of Sidi Bouzid aquifer, central Tunisia. Environ Earth Sci 78, 692 (2019). https://doi.org/10.1007/s12665-019-8733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8733-y

Keywords

Navigation