Skip to main content

Advertisement

Log in

GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abba AH, Noor ZZ, Yusuf RO, Din MF, Hassan MAA (2013) Assessing environmental impacts of municipal solid waste of Johor by analytical hierarchy process. Resour Conserv Recycl 73:188–196

    Article  Google Scholar 

  • Abdulaziz MB, Faisal KZ, Mohammad TH (2014) Natural hazards in Saudi Arabia. In: Ismail-Zadeh A, Fucugauchi JU, Kijko A, Takeuchi K, Zaliapin I (eds) Extreme natural hazards, disaster risks and societal implications. Cambridge University Press, Cambridge

    Google Scholar 

  • Abulfatih HA (1981) Wild plants of Abha and its surroundings. Saudi Publishing and Distributing House, vol 5, pp 125–159

  • Ahmad HA, Zainura ZN, Rafiu O, Mohd FMD, Mohd AAH (2013) Assessing environmental impacts of municipal solid waste of Johor by analytical hierarchy process. Resour Conserv Recycl 73:188–196

    Article  Google Scholar 

  • Akgun A, Türk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61:595–611

    Article  Google Scholar 

  • Altrock CV, Krause B (1994) Multi-criteria decision-making in German automotive industry using fuzzy logic. Fuzzy Sets Syst 63(3):375–380

    Article  Google Scholar 

  • Andreo B, Vías J, Durán JJ, Jiménez P, López-Geta JA, Carrasco F (2008) Methodology for ground water recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeology 16(5):911–925

    Article  Google Scholar 

  • Arlegui LE, Soriano MA (1998) Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain). Int J Remote Sens 19:3169–3185

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Balezentiene L, Streimikiene D, Balezentis T (2013) Fuzzy decision support methodology for sustainable energy crop selection. Renew Sustain Energy Rev 17:83–93

    Article  Google Scholar 

  • Barredo J, Benavides A, Hervas J, VanWesten CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf 2:9–23

    Article  Google Scholar 

  • Berhanu B, Melesse AM, Sleshi Y (2013) GIS-based hydrological zones and soil geo-database of Ethiopia. Catena. https://doi.org/10.1016/j.catena.2012.12.007

    Article  Google Scholar 

  • Brabb E (1984) Innovative approaches for landslide hazard evaluation. In: IV international symposium on landslides, Toronto, pp 307–323

  • Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17(1):233–247

    Article  Google Scholar 

  • Cammeraat LH, Imeson AC (1999) The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. Catena 37:107–127

    Article  Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72. https://doi.org/10.5194/nhess-2-57-2002

    Article  Google Scholar 

  • Carlos AB, Odette IJ (2012) Soil erodibility mapping and its correlation with soil properties in central Chile. Geoderma 189–190:116–123

    Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. J Int Assoc Math Geol 15:403–426

    Article  Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Canadian society of soil science, Lewis Publishers, Charlottetown

    Google Scholar 

  • Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inf Syst 5(3):321–339

    Article  Google Scholar 

  • Chen K, Blong R, Jacobson C (2001) MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environ Model Softw 16:387–397

    Article  Google Scholar 

  • Chen Y, Yu J, Khan S (2010) Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ Modell Softw 25(12):1582–1591

    Article  Google Scholar 

  • Chen VYC, Pang Lien H, Liu CH, Liou JJH, Hshiung Tzeng G, Yang LS (2011) Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl Soft Comput 11:265–275

    Article  Google Scholar 

  • Cheung FKT, Kuen JLF, Skitmore M (2002) Multi-criteria evaluation model for the selection of architecture consultants. Constr Manag Econ 20(7):569–580

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing ground water potential in West Medinipur District, West Bengal, India. Int J Remote Sens 30(1):231–250

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 2011(63):397–406. https://doi.org/10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78:1749–1776

    Article  Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA (2005) Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability. Hydrol Earth Syst Sci Discuss 2:155–208

    Article  Google Scholar 

  • Duru O, Bulut E, Yoshida S (2012) Regime switching fuzzy AHP model for choicevarying priorities problem and expert consistency prioritization: a cubic fuzzypriority matrix design. Expert Syst Appl 39:4954–4964

    Article  Google Scholar 

  • Dwivedi RS, Sreenivas K, Ramana KV (2005) Land-use/land-cover change analysis in part of Ethiopia using Landsat Thematic Mapper data. Int J Remote Sens 26(7):1285–1287

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65:2105–2128

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T, Nazmfar H, Rezaei Moghaddam MH (2013) Landslide susceptibility mapping for the Urmia Lake basin, Iran: a multi-criteria evaluation approach using GIS. Int J Environ Res 7(2):319–3336

    Google Scholar 

  • Feizizadeh B, Roodposhti MS, Jankowski P, Blaschke T (2014) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci 73:208–221

    Article  Google Scholar 

  • Gomez B, Jones PJ (2010) Research methods in geography—a critical introduction. Wiley, Chichester

    Google Scholar 

  • Gorsevski PV, Jankowski P (2010) An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Comput Geosci 36:1005–1020

    Article  Google Scholar 

  • Greenwood WR (1985) Geologic map of the Abha quadrangle, sheet 18 F. Kingdom of Saudi Arabia, Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources GM-75 c, scale 1:250,000

  • GSI and NRSC (2010) Manual for national geomorphological and lineament mapping on 1:50,000 scale (Document control number: NRSC-RS&GISAA-ERG-G&GD-FEB’ 10- TR149). National Remote Sensing Centre, Hyderabad

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hill J, Schutt B (2000) Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sens Environ 74:557–569

    Article  Google Scholar 

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133:266–281

    Article  Google Scholar 

  • Hsieh TY, Lu ST, Tzeng GH (2004) Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int J Project Manage 22(7):573–584

    Article  Google Scholar 

  • Ilanloo M (2011) A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: an experience of Karaj dam basin in Iran. In: The 2nd international geography symposium-mediterranean environment. Proc Soc Behav Sci 19, 668–676

  • Intarawichian N, Dasananda S (2010) Analytical Hierarchy Process for landslide susceptibility mapping in lower Mae Chem watershed, Northern Thailand. Suranaree J Sci Technol 17(3):277–292

    Google Scholar 

  • Ishizaka A, Labib A (2011) Review of the main developments in the analytic hierarchy process. Expert Syst Appl 38:14336–14345

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18(7):1713–1728

    Article  Google Scholar 

  • Kahraman C, Cebeci U, Ulukan Z (2003) Multi-criteria supplier selection using fuzzy AHP. Logist Inf Manage 16(6):382–394

    Article  Google Scholar 

  • Katz O, Morgan JK, Aharonov E, Dugan B (2014) Controls on the size and geometry of landslides: insights from discrete element numerical simulations. Geomorphology 220:104–113

    Article  Google Scholar 

  • Kutlu AC, Ekmekçioglu M (2012) Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. J Expert Syst Appl 39:61–67

    Article  Google Scholar 

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34(2):223–232

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113. https://doi.org/10.1007/s002540100310

    Article  Google Scholar 

  • Lee S, Choi J, Woo I (2004a) The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosci J 8:51–60

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004b) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Li SP, Will BF (2005) A fuzzy logic system for visual evaluation. Environ Plan 32(2):293–304

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (1999) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Liu B (2004) Uncertainty theory: an introduction to its axiomatic foundations. Springer, Berlin

    Book  Google Scholar 

  • Lu GY, Wong DW (2008) An adoptive inverse-distance weighting spatial interpolation techniques. Comput Geosci 34:1044–1055

    Article  Google Scholar 

  • Madrucci V, Taioli F, De Araújo CC (2008) Groundwater favourability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. J Hydrol 357:153–173

    Article  Google Scholar 

  • Maerz NH, Youssef AM, Pradhan B, Bulkhi A (2014) Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi. Arab J Geosci. https://doi.org/10.1007/s12517-014-1423-x

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York, p 392

    Google Scholar 

  • Malczewski J (2004) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4(1):5–22

    Article  Google Scholar 

  • Mallick J (2016) Geospatial-based soil variability and hydrological zones of Abha semi-arid mountainous watershed, Saudi Arabia. Arab J Geosci 9:281. https://doi.org/10.1007/s12517-015-2302-9

    Article  Google Scholar 

  • Mallick J, Alashker Y, Shams M, Mohd A, Mohd AH (2014) Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Taylor and Francis, Oxford, pp 1–26

    Google Scholar 

  • Mandal S, Maiti R (2014) Role of lithological composition and lineaments in landsliding: a case study of Shivkhola watershed, Darjeeling Himalaya. Int J Geol Earth Environ Sci 4(1):126–132

    Google Scholar 

  • Marinoni O, Higgins A, Hajkowicz S, Collins K (2009) The multiple criteria analysis tool (MCAT): a new software tool to support environmental investment decision making. Environ Modell Softw 24(2):153–164

    Article  Google Scholar 

  • Mason PJ, Rosenbaum M (2002) Geohazard mapping for predicting landslides: an example from the Langhe Hills in Piemonte, NW Italy. Q J Eng Geol Hydrogeol 35:317–326

    Article  Google Scholar 

  • Mcintyre C, Parfitt MK (1998) Decision support system for residential land development site selection process. J Archit Eng 4(4):125–131

    Article  Google Scholar 

  • Mijani N, Samani NN (2017) Comparison of fuzzy-based models in landslide hazard mapping. The international archives of the photogrammetry, remote sensing and spatial information sciences, XLII-4/W4, pp 407–416

  • Millet I, Saaty TL (2000) On the relativity of relative measures—accommodating both rank preservation and rank reversal in the AHP. Eur J Oper Res 121:205–212

    Article  Google Scholar 

  • Nalbant S, Alptekin O (1995) The use of Landsat Mapper imagery for analyzing lithology and structure of Korucu-Dugla area in western Turkey. Int J Remote Sens 16(13):2357–2374

    Article  Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1):11–20

    Article  Google Scholar 

  • Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the Vienna conference on HydroGIS 96: application of geographic information systems in hydrology and water resources management, IAHS Pub. No. 235, pp 559–566

  • Neaupane KM, Piantanakulchai M (2006) Analytic network process model for landslide hazard zonation. Eng Geol 85:281–294

    Article  Google Scholar 

  • Nicholas MS (2005) The remote sensing tutorial, NASA’s Goddard, USA. http://www.ucl.ac.uk/EarthSci/people/lidunka/GEOL2014/Geophysics%2010%20-Remote%20sensing/Remote%20Sensing%20Tutorial%20Overview.htm. Accessed 31 Mar 2018

  • Oguzitimur S (2011) Why fuzzy analytic hierarchy process approach for transport problems? In: European regional science association ERSA conference papers, Aug 2–6, 1090 Vienna, Austria, ersa11, p 438

  • Ohta K, Kobashi G, Takato S, Kagaya S, Yamada H, Minakami H, Yamamura E (2007) Analysis of the geographical accessibility of neurosurgical emergency hospitals in Sapporo city using GIS and AHP. Int J Geogr Inf Sci 21(6):687–698

    Article  Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J Hydrol 525:197–208

    Article  Google Scholar 

  • Opricovic S, Tzeng GH (2003) Defuzzification within a fuzzy multicriteria decision model. Int J Uncertain Fuzziness Knowl Syst 11:635–652

    Article  Google Scholar 

  • Ouma Y, Tateishi R (2014) Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6(6):1515–1545

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779. https://doi.org/10.1007/s11069-013-0728-5

    Article  Google Scholar 

  • Pradeep KS, Kumar S, Singh RP (2000) Neotectonic study of Ganga and Yamunatear faults, NW Himalaya using remote sensing and GIS. Int J Remote Sens 21:499–518

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Google Scholar 

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30

    Article  Google Scholar 

  • Rahaman SA, Abdulajeez S, Aruchamy S, Jegankumar R (2015) Prioritization of Sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system—a study of Kallar watershed, Tamil Nadu. Aquat Proc 4:1322–1330

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). US Department of Agriculture (editor). Washington (DC): US Department of Agriculture. Agricultural Handbook, vol 703, pp 1–251

  • Roodposhti MS, Rahimi S, Beglou MJ (2014) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Nat Hazards 73:77–95

    Article  Google Scholar 

  • Roodposhti MS, Aryal J, Shahabi H, Safarrad T (2016) Fuzzy shannon entropy: a hybrid GIS-based landslide susceptibility mapping method. Entropy 18:343. https://doi.org/10.3390/e18100343

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structure. J Math Psychol 15(3):34–39

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Vargas LG (2008) Prediction, projection and forecasting, vol 251. Kluwer, Dordrecht

    Google Scholar 

  • Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci Rep 5:9899

    Article  Google Scholar 

  • Sheldrick BH, Wang C (1993) Particle size distribution. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian society of soil science, Lewis, Ann Arbor (MI), pp 499–511

    Google Scholar 

  • Singh BR, Singh S, Singh P, Mishra DK (2014) A study on geomorphological response for runoff prediction in small watershed. IOSR J Comput Eng (IOSR-JCE) e-ISSN: 2278– 0661, p-ISSN: 2278–8727, volume 16, issue 4, version VI (Jul–Aug 2014), pp 86–94

  • Suzan ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in central Turkey. Int J Remote Sens 19:1101–1114

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • Valor E, Caselles V (1996) Mapping land surface emissivity from NDVI. Application to European, African and South American areas. Remote Sens Environ 57:167–184

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Vincent P (2008) Saudi Arabia: an environmental overview. Taylor and Francis, London. https://doi.org/10.1201/9780203030882

    Book  Google Scholar 

  • Wang WD, Guo J, Fang LG, Chang XS (2012) A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ Earth Sci 65:1705–1714

    Article  Google Scholar 

  • Wheater HS, Larentis P, Hamilton GS (1989) Design rainfall characteristics for south-west of Saudi Arabia. In: Proceedings of the Institution of Civil Engineers, Part 2, pp 517–538

  • Willey HB (1979) Fuzzy theory and environmental control in buildings. Environ Plan B 6(3):279–291

    Article  Google Scholar 

  • Williams CJ, Lee SS, Fisher RA, Dickerman LH (1999) A comparison of statistical methods for prenatal screening for Down syndrome. Appl Stoch Models Data Anal 15:89–101

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning agriculture handbook no 537. US Department of Agriculture Science and Education Administration, Washington, DC

    Google Scholar 

  • Xu C (2015) Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: principles and case studies. Geosci Front 6:825–836

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12

    Article  Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226. https://doi.org/10.1007/s11069-006-9030-0

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, 875 analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85:274–287. https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306. https://doi.org/10.1007/s10064-009-0185-2

    Article  Google Scholar 

  • Youssef AM, Maerz N (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70:3115–3130. https://doi.org/10.1007/s12665-013-2373-4

    Article  Google Scholar 

  • Youssef AM, Maerz HN, Al-Otaibi AA (2012) Stability of rock slopes along Raidah Escarpment Road, Aseer Area, Kingdom of Saudi Arabia. J Geogr. https://doi.org/10.5539/jgg.v4n2p48

    Article  Google Scholar 

  • Youssef AM, Al-kathery M, Pradhan B (2014) Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J. https://doi.org/10.1007/s12303-014-0032-8

    Article  Google Scholar 

  • Youssef AM, Al-kathery M, Pradhan B (2015a) Assessment of impact of mass movements on the upper Tayyah valley’s bridge along Shear escarpment highway, Asir region (Saudi Arabia) using remote sensing data and field investigation. Nat Hazards Earth Syst Sci Discuss 3:497–533

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Mohamed M (2015b) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Aseer Region, Saudi Arabia. Landslides 13:839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, El-Haddad BA, Dhahry BK (2016) Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Aseer Region, Saudi Arabia. Bull Eng Geol Environ 75:63–87

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by Deanship of Scientific Research, King Khalid University, Saudi Arabia: Project Code: 411/2017-2018. NASA-USGS personnel at the land DAAC who provided the latest LANDSAT-8 satellite image which is also much appreciated. We are also thankful to the General Authority of Meteorology and Environmental, Saudi Arabia and Saudi Geological Survey for providing the Rainfall and geological data for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Mallick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, J., Singh, R.K., AlAwadh, M.A. et al. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ Earth Sci 77, 276 (2018). https://doi.org/10.1007/s12665-018-7451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7451-1

Keywords

Navigation