Skip to main content

Advertisement

Log in

Environmental pollution by heavy metals in the São João River basin, southern Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Environmental pollution tends to reduce the quality of water sources around the world. Thus, there is a clear need for strategic assessments of conditions that negatively affect river basins. The São João River basin is located in a strategic conservation area due to the abounding water resources and biodiversity, but is strongly affected by anthropic activity. In this study, eight metals were evaluated (Cu, Mn, Fe, Zn, Cr, Co, Cd and Pb) in sediment and water from ten different points in the São João water basin. The São João basin pollution was evaluated through the geoaccumulation index (Igeo), ecological risk potential (ERP) and degree of pollution (Dp). The most toxic metals found in sediments were Cr (3.1–10.7), Cd (2.1–5.5) and Pb (5.0–28.1) in µg g−1. In the water samples, the most toxic metals were Cr (3.7–33.2), Cd (6.3–14.2) and Pb (5.0–57.5) in µg L−1. The Igeo presented indices between 2 and 3 in 80% of the samples, indicating significant pollution in the sediment. In 40% of the points sampled, the ERP values indicated severe risk for the ecosystem. In 30% of the water samples, the Dp values were over 40, indicating the highest pollution level. The results reveal that the use of land and water in the São João water basin without proper care might represent considerably high ecological and sanitary risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves RIS, Sampaio CF, Nadal M et al (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155. doi:10.1016/j.envres.2014.05.012

    Article  Google Scholar 

  • APHA (2005) Standards methods for the examination of water and wastewater, 21st edn. Washington

  • Bonotto DM (2006) Hydro(radio)chemical relationships in the giant Guarani aquifer, Brazil. J Hydrol 323:353–386. doi:10.1016/j.jhydrol.2005.09.007

    Article  Google Scholar 

  • Carmo MRB, Moro RS, Nogueira MKFS, Kaczmarech R (2010) Pitangui, river of contrasts: its places, its fish, its people. In: Gealh AM, Melo MS, Moro RS (eds) The riparian vegetation along the Pitangui River. UEPG, Ponta Grossa

    Google Scholar 

  • CCME (2001) Canadian Environmental Quality Guidelines. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/. Accessed 10 Dec 2016

  • Cetesb (2009) Inland water quality in the state of São Paulo. http://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/32/2013/11/variaveis.pdf. Accessed 2 Jan 2017

  • Chen J, Yuan J, Wu S et al (2012) Distribution of trace element contamination in sediments and riverine agricultural soils of the Zhongxin River, South China, and evaluation of local plants for biomonitoring. J Environ Monit 14:2663. doi:10.1039/c2em30241a

    Article  Google Scholar 

  • Cheng H, Liang A, Zhi Z (2017) Heavy metals sedimentation risk assessment and sources analysis accompanied by typical rural water level fluctuating zone in the Three Gorges Reservoir Area. Environ Earth Sci 76:418. doi:10.1007/s12665-017-6732-4

    Article  Google Scholar 

  • CONAMA (2011) 430/2011. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed 10 Dec 2016

  • CONAMA (2012) 454/2012. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=693. Accessed 10 Dec 2016

  • Conceição FT, Navarro GR, Silva AM (2013) Anthropogenic Influences on Cd, Cr, Cu, Ni, Pb and Zn concentrations in soils and sediments in a watershed with sugar cane crops at São. Int J Environ Res 7:551–560

    Google Scholar 

  • Defo MA, Spear PA, Couture P (2014) Consequences of metal exposure on retinoid metabolism in vertebrates: a review. Toxicol Lett 225:1–11. doi:10.1016/j.toxlet.2013.11.024

    Article  Google Scholar 

  • Duarte B, Caetano M, Almeida PR et al (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668. doi:10.1016/j.envpol.2009.12.004

    Article  Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 57:295–304. doi:10.1023/B:GEJO.0000007250.92458.de

    Article  Google Scholar 

  • EMBRAPA (2006) Brazilian system of soil classification, 2nd edn. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Enderlein S, Enderlein RE, Williams WP (1997) Water pollution control. A guide to the use of water quality management principles. In: Helmer R, Hespanho I (eds) WHO. WHO/UNEP, E&FN Spon, London

  • Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin

    Book  Google Scholar 

  • Garneau C, Sauvage S, Probst A, Sánchez-Pérez JM (2015) Modelling of trace metal transfer in a large river under different hydrological conditions (the Garonne River in southwest France). Ecol Model 306:195–204. doi:10.1016/j.ecolmodel.2014.09.011

    Article  Google Scholar 

  • Gealh AM, Melo MS (eds) (2014) São João river, Carambeí, PR: source of life, care due. UEPG, Ponta Grossa

    Google Scholar 

  • González-Weller D, Karlsson L, Caballero A et al (2006) Lead and cadmium in meat and meat products consumed by the population in Tenerife Island, Spain. Food Addit Contam 23:757–763. doi:10.1080/02652030600758142

    Article  Google Scholar 

  • Govind P (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci Int Sci Congr Assoc 2:17–23

    Google Scholar 

  • Guimarães GB, Godoy IC, Melo MS, Filho JCAF (2011) Geodiversity of the São João river basin. In: Gealh AM (ed) Environmental diagnosis and conservation in the São João river basin. UEPG, Ponta Grossa

    Google Scholar 

  • Gunkel-Grillon P, Roth E, Laporte-Magoni C, Le Mestre M (2015) Effects of long term raw pig slurry inputs on nutrient and metal contamination of tropical volcanogenic soils, Uvéa Island (South Pacific). Sci Total Environ 533:339–346. doi:10.1016/j.scitotenv.2015.06.110

    Article  Google Scholar 

  • Guo R, He X (2013) Spatial variations and ecological risk assessment of heavy metals in surface sediments on the upper reaches of Hun River, Northeast China. Environ Earth Sci 70:1083–1090. doi:10.1007/s12665-012-2196-8

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001. doi:10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • IBGE (2012) Agricultural production. http://www.ibge.gov.br/. Accessed 10 Dec 2016

  • Iles AC, Rasmussen JB (2005) Indirect effects of metal contamination on energetics of yellow perch (Perca flavescens) resulting from food web simplification. Freshw Biol 50:976–992. doi:10.1111/j.1365-2427.2005.01380.x

    Article  Google Scholar 

  • Islam S, Ahmed K, Habibullah-Al-Mamun Masunaga S (2015) Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci Total Environ 512:94–102. doi:10.1016/j.scitotenv.2014.12.100

    Article  Google Scholar 

  • Jeong H, Kim H, Jang T (2016) Irrigation water quality standards for indirect wastewater reuse in agriculture: a contribution toward sustainable wastewater reuse in South Korea. Water 8:169. doi:10.3390/w8040169

    Article  Google Scholar 

  • Khaniki GRJ, Yunesian M, Mahvi AH, Nazmara S (2005) Trace metal contaminants in Iranian flat breads. J Agric Soc Sci 1:1–4. doi:10.3923/pjn.2005.294.297

    Google Scholar 

  • Latimer G (ed) (2012) Official Methods of Analysis of AOAC international, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153. doi:10.1007/s005720050174

    Article  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ et al (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853. doi:10.1016/j.scitotenv.2013.08.090

    Article  Google Scholar 

  • Licht OAB (2001) Geochemical atlas of the state of Paraná, 1st edn. MINEROPAR, Curitiba

    Google Scholar 

  • Liu S, Shi X, Yang G et al (2016) Concentration distribution and assessment of heavy metals in the surface sediments of the western Gulf of Thailand. Environ Earth Sci 75:346. doi:10.1007/s12665-016-5422-y

    Article  Google Scholar 

  • Luo XS, Yu S, Zhu YG, Li XD (2012) Trace metal contamination in urban soils of China. Sci Total Environ 421:17–30. doi:10.1016/j.scitotenv.2011.04.020

    Article  Google Scholar 

  • Machado CS, Alves RIS, Fregonesi BM et al (2015) Integrating three tools for the environmental assessment of the Pardo River, Brazil. Environ Monit Assess. doi:10.1007/s10661-015-4788-8

    Google Scholar 

  • Melo MS, Moro RS, Guimarães GB (eds) (2007) Natural patrimony of the Campos Gerais of Paraná. UEPG, Ponta Grossa

    Google Scholar 

  • MMA (2007) Priority areas for conservation, sustainable use and benefit sharing of Brazilian biodiversity. Ministry of the Environment of Brazil, Brasilia

    Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442. doi:10.1016/j.chemosphere.2003.10.047

    Article  Google Scholar 

  • Pascoal C, Marvanová L, Cássio F (2005) Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 10:109–128. doi:10.1127/0003-9136/2005/0162-0481

    Google Scholar 

  • Pilarczyk R, Wójcik J, Czerniak P et al (2013) Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ Monit Assess 185:8383–8392. doi:10.1007/s10661-013-3180-9

    Article  Google Scholar 

  • Qing X, Yutong Z, Shenggao L (2015) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf 120:377–385. doi:10.1016/j.ecoenv.2015.06.019

    Article  Google Scholar 

  • Rogan N, Dolenec T, Serafimovski T et al (2010) Distribution and mobility of heavy metals in paddy soils of the Kočani Field in Macedonia. Environ Earth Sci 61:899–907. doi:10.1007/s12665-009-0405-x

    Article  Google Scholar 

  • Salem DMSA, Khaled A, El Nemr A, El-Sikaily A (2014) Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. Egypt J Aquat Res 40:349–362. doi:10.1016/j.ejar.2014.11.004

    Article  Google Scholar 

  • SAS (2014) Agricultural production-Secretariat of Agriculture and supply. http://www.agricultura.pr.gov.br/modules/conteudo/conteudo.php?conteudo=137. Accessed 13 Jun 2017

  • Seguí MDMB, Hess T, Sakrabani R, Tyrrel S (2017) Long-term phosphorus removal in land treatment systems: evaluation, experiences and opportunities. Crit Rev Environ Sci Technol 47:314–334. doi:10.1080/10643389.2017.1318617

    Article  Google Scholar 

  • Silva CP, de Almeida TE, Zittel R et al (2016) Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts. Environ Monit Assess 188:663–672. doi:10.1007/s10661-016-5679-3

    Article  Google Scholar 

  • Somers KM, Harvey HH (1984) Alteration of fish communities in lakes stressed by acid deposition and heavy metals near Wawa, Ontario. Can J Fish Aquat Sci 41:20–29. doi:10.1139/f84-002

    Article  Google Scholar 

  • Souza JJLL, Abrahão WAP, de Mello JWV et al (2015) Geochemistry and spatial variability of metal(loid) concentrations in soils of the state of Minas Gerais, Brazil. Sci Total Environ 505:338–349. doi:10.1016/j.scitotenv.2014.09.098

    Article  Google Scholar 

  • Spencer P, Bowman MF, Dubé MG (2008) A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in northern Canada. Integr Environ Assess Manag 4:327–343. doi:10.1897/IEAM_2007-073.1

    Article  Google Scholar 

  • US.EPA (2002) National recommended water quality criteria. United States Environ Prot Agency EPA-822-R-:36

  • US.EPA (2012) Guidelines for water reuse: EPA/600/R-12/618. Environmental Protection Agency, Washington

    Google Scholar 

  • Voigt CL, Silva CP, Doria HB et al (2015) Bioconcentration and bioaccumulation of metal in freshwater Neotropical fish Geophagus brasiliensis. Environ Sci Pollut Res 22:8242–8252. doi:10.1007/s11356-014-3967-4

    Article  Google Scholar 

  • Wepener V, Van Vuren JHJ, Du Preez HH (2001) Uptake and distribution of a copper, iron and zinc mixture in gill, liver and plasma of a freshwater teleost, Tilapia sparrmanii. Water SA 27:99–108. doi:10.4314/wsa.v27i1.5016

    Google Scholar 

  • Wu L, Tan C, Liu L et al (2012) Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure. Geoderma 173:224–230. doi:10.1016/j.geoderma.2011.12.003

    Article  Google Scholar 

  • Wuana R, Okieimen F (2014) Heavy metals in contaminated soils. In: Asrari E (ed) Heavy metal contamination of water and soil. Apple Academic Press, Oakville, pp 1–50

    Google Scholar 

  • Xu Y, Yu W, Ma Q, Zhou H (2013) Accumulation of copper and zinc in soil and plant within 10-year application of different pig manure rates. Plant Soil Environ 59:492–499

    Article  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  Google Scholar 

  • Zamani AA, Yaftian MR, Parizanganeh A et al (2012) Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant. Iran J Environ Health Sci Eng 9:29. doi:10.1186/1735-2746-9-29

    Article  Google Scholar 

  • Zhao Y, Fang X, Mu Y et al (2014) Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, glycine max, in Southern China. Bull Environ Contam Toxicol 92:427–432. doi:10.1007/s00128-014-1218-5

    Article  Google Scholar 

  • Zheng N, Wang Q, Liang Z, Zheng D (2008) Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ Pollut 154:135–142. doi:10.1016/j.envpol.2008.01.001

    Article  Google Scholar 

  • Zheng-Qi X, Shi-Jun N, Xian-Guo T, Cheng-jiang Z (2008) Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ Sci Technol 31:112–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber Pinto da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.P., da Silveira, E.L. & de Campos, S.X. Environmental pollution by heavy metals in the São João River basin, southern Brazil. Environ Earth Sci 76, 554 (2017). https://doi.org/10.1007/s12665-017-6890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6890-4

Keywords

Navigation