Skip to main content
Log in

Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, M. L., Zhao, F. J., McGrath, S. P., Nicholson, F. a., & Chambers, B. J. (2004). Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environment Quality, 33(2), 532. doi:10.2134/jeq2004.5320.

    Article  CAS  Google Scholar 

  • Al-Khatib, R., Zhao, J., Blom, D., Ghoshroy, K., Creamer, R., & Ghoshroy, S. (2008). Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. turkish) roots. Microscopy and Microanalysis, 14(1), 57–62. doi:10.1017/s1431927608085152.

    Google Scholar 

  • Alloway, B. (Ed.) (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (3rd ed.). New York: Springer.

    Google Scholar 

  • Bi, R., Schlaak, M., Siefert, E., Lord, R., & Connolly, H. (2011). Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere, 83(3), 318–326. doi:10.1016/j.chemosphere.2010.12.052.

    Article  CAS  Google Scholar 

  • Cannata, M., Bertoli, A., Carvalho, R., Bastos, A. R., Freitas, M., Augusto, A., & Varennes, A. D. (2013). Toxic metals in Raphanus sativus: assessing the levels of cadmium and lead in plants and damage to production. Revista de Ciências Agrárias, 36(4), 426–434.

    Google Scholar 

  • CCME (2003). Canadian Council of Ministers of the Environment: Soil Quality Guidelines for the Protection of Environmental and Human Health/Agricultural Residential/parkland Commercial Industrial. http://ceqg-rcqe.ccme.ca/download/en/342/. Accessed 27 May 2016.

  • Chang, C. Y., Yu, H. Y., Chen, J. J., Li, F. B., Zhang, H. H., & Liu, C. P. (2014). Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environmental Monitoring and Assessment, 186(3), 1547–1560. doi:10.1007/s10661-013-3472-0.

    Article  CAS  Google Scholar 

  • Chaves, L. H. G., de Mesquita, E. F., de Araujo, D. L., & de França, C. P. (2010). Crescimento, distribuição e acúmulo de cobre e zinco em plantas de pinhão-manso. Revista Ciencia Agronomica, 41(2), 167–176. doi:10.1590/s1806-66902010000200001.

    Article  Google Scholar 

  • Domínguez, M. T., Madrid, F., Marañón, T., & Murillo, J. M. (2009). Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere, 76, 480–486. doi:10.1016/j.chemosphere.2009.03.026.

    Article  Google Scholar 

  • Fässler, E., Robinson, B. H., Stauffer, W., Gupta, S. K., Papritz, A., & Schulin, R. (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems and Environment, 136(1–2), 49–58. doi:10.1016/j.agee.2009.11.007.

    Article  Google Scholar 

  • Golia, E. E., Mitsios, I. K., & Tsadilas, C. D. (2003). Concentration of heavy metals in Burley, Virginia and Oriental tobacco leaves in the Thessaly region of Central Greece. CCommunications in Soil Science and Plant Analysis, 36, 200–230. doi:10.1081/css-200043229.

    Google Scholar 

  • Gonçalves, A. C., Nacke, H., Schwantes, D., & Coelho, G. F. (2014). Heavy metal contamination in brazilian agricultural soils due to application of fertilizers. In M. C. Hernandez Soriano (Ed.), Environmental Risk Assessment of Soil Contamination (1st ed.). InTech.

  • Huang, B. (Ed.) (2006). Plant-environment interactions (books in soils, plants, and the environment) (3rd ed.). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Jan, S., & Parray, J. A. (2016). Approaches to heavy metal tolerance in plants. Singapore: Springer.

    Book  Google Scholar 

  • Jayakumar, K., & Jaleel, C. A. (2009). Uptake and accumulation of cobalt in plants: a study based on exogenous cobalt in soybean. Botany Research International, 2(4), 310–314.

    CAS  Google Scholar 

  • Koo, B. J., Chen, W., Chang, A. C., Page, A. L., Granato, T. C., & Dowdy, R. H. (2010). A root exudates based approach to assess the long-term phytoavailability of metals in biosolids-amended soils. Environmental Pollution, 158(8), 2582–2588. doi:10.1016/j.envpol.2010.05.018.

    Article  CAS  Google Scholar 

  • Latimer, G. (Ed.) (2012). Official methods of analysis of AOAC international (19th ed.). Gaithersburg: Aoac Intl.

    Google Scholar 

  • Liu, H., Wang, H., Ma, Y., Wang, H., & Shi, Y. (2016). Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 144, 1960–1965. doi:10.1016/j.chemosphere.2015.10.093.

    Article  CAS  Google Scholar 

  • Lugon-Moulin, N., Martin, F., Krauss, M. R., Ramey, P. B., & Rossi, L. (2006). Cadmium concentration in tobacco (Nicotiana tabacum L.) from different countries and its relationship with other elements. Chemosphere, 63(7), 1074–1086. doi:10.1016/j.chemosphere.2005.09.005.

    Article  CAS  Google Scholar 

  • Mapanda, F., Mangwayana, E. N., Nyamangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems and Environment, 107(2–3), 151–165. doi:10.1016/j.agee.2004.11.005.

    Article  CAS  Google Scholar 

  • Martin, F., Bovet, L., Cordier, A., Stanke, M., Gunduz, I., Peitsch, M. C., & Ivanov, N. V. (2012). Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics, 13(1), 674. doi:10.1186/1471-2164-13-674.

    Article  CAS  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition (5th ed.). Springer Netherlands.

  • Millaleo, R., Reyes-Diaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 470–481. doi:10.4067/s0718-95162010000200008.

    Article  Google Scholar 

  • Ndeda, L. A., & Manohar, S. (2014). Bioconcentration factor and translocation ability of heavy metals within different habitats of hydrophytes in Nairobi dam, Kenya. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 8(5), 42–45. doi:10.9790/2402-08544245.

    Article  Google Scholar 

  • Olguín, E. J., & Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology, 30(1), 3–8. doi:10.1016/j.nbt.2012.05.020.

    Article  Google Scholar 

  • Ramalho, J. F. G. P., Sobrinho, N. M. B. D. A., & Velloso, A. C. X. (2000). Contaminação da microbacia de Caetes com metais pesados pelo uso de agroquimicos. Pesquisa Agropecuaria Brasileira, 35(7), 1289–1303. doi:10.1590/s0100-204x2000000700002.

    Article  Google Scholar 

  • Regassa, G., & Chandravanshi, B. S. (2016). Levels of heavy metals in the raw and processed Ethiopian tobacco leaves. SpringerPlus, 5(1), 1–9. doi:10.1186/s40064-016-1770-z.

    Article  CAS  Google Scholar 

  • Santos, A. C. Q., Accioly, A. M. A., Nascimento, C. W. A., Santos, N. M., Melo, É. E. C., & Xavier, B. T. L. (2014). Competitive absorption of cadmium, zinc, and lead by velvet bean (Stizolobium Aterrimum) and metal distribution among soil fractions. Communications in Soil Science and Plant Analysis, 45(11), 1499–1510. doi:10.1080/00103624.2014.904333.

    Article  CAS  Google Scholar 

  • Sidik, N. M., & Othman, N. F. (2013). Accumulation of nickel in transgenic tobacco. In AIP Conference Proceedings (Vol. 1571, pp. 298–301). Melville: AIP Publishing. doi:10.1063/1.4858672.

    Google Scholar 

  • Stojanović, M. D., Mihajlović, M. L., Milojković, J. V., Lopičić, Z. R., Adamović, M., & Stanković, S. (2012). Efficient phytoremediation of uranium mine tailings by tobacco. Environmental Chemistry Letters, 10(4), 377–381. doi:10.1007/s10311-012-0362-6.

    Article  Google Scholar 

  • Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., & Berta, G. (2006). Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 65(1), 74–81. doi:10.1016/j.chemosphere.2006.02.048.

    Article  CAS  Google Scholar 

  • Tsotsolis, N., Lazardiou, T., Matsi, T., Bargiacchi, E., Miele, S., & Barbayiannis, N. (2002). Growth and heavy metals content of different tobacco types cultivated in Greece and in Italy. New Orleans. https://www.coresta.org/abstracts/growth-and-heavy-metals-content-different-tobacco-types-cultivated-greece-and-italy-4475.

  • Xue, P. Y., & Yan, C. Z. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85(7), 1176–1181. doi:10.1016/j.chemosphere.2011.09.051.

    Article  CAS  Google Scholar 

  • Zaprjanova, P., Dospatliev, L., Angelova, V., & Ivanov, K. (2010). Correlation between soil characteristics and lead and cadmium content in the aboveground biomass of Virginia tobacco. Environmental Monitoring and Assessment, 163(1–4), 253–261. doi:10.1007/s10661-009-0831-y.

    Article  CAS  Google Scholar 

  • Zoffoli, H. J. O., Do Amaral-Sobrinho, N. M. B., Zonta, E., Luisi, M. V., Marcon, G., & Tolón-Becerra, A. (2013). Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil’s southern region. Environmental Monitoring and Assessment, 185(3), 2423–2437. doi:10.1007/s10661-012-2721-y.

    Article  CAS  Google Scholar 

  • Zubko, M. K., Zubko, E. I., Khvedynich, O. A., Lopato, S. V., Latipov, S. A., & Gleba, Y. Y. (2001). Somatic hybridization between Nicotiana tabacum L. (tobacco) and Atropa belladonna L. (deadly nightshade). In T. Nagata & Y. P. S. Bajaj (Eds.), Somatic hybridization in crop improvement II (49th ed.). Berlin Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber Pinto da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.P., de Almeida, T.E., Zittel, R. et al. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts. Environ Monit Assess 188, 663 (2016). https://doi.org/10.1007/s10661-016-5679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5679-3

Keywords

Navigation