Skip to main content
Log in

Quantitative assessment of metal contamination and associated pollution risk in sediments from the Mara River in Tanzania

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

For most rivers in sub-Saharan Africa, information about pollution indices related to sediments is sparse. Sedimentological research of rivers that empty into Lake Victoria is highly patchy and wide apart. The present study determined the levels and associated risk of As, Cd, Cr, Hg, and Pb in sediments collected from four different sites along the Mara River that empties into Lake Victoria in Tanzania. Samples were collected in the dry and rainy months in 2019. Pollution indices, namely geo-accumulation index (Igeo), enrichment factor (EF), contamination factor (CF), modified contamination degree (mCd), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI) were used to evaluate the influence of heavy metal contamination in sediments. Dry month mean concentrations, in milligram per kilogram, of heavy metals were as follows: As (11.04 ± 0.13), Cr (1.02 ± 0.29), Cd (0.43 ± 0.05), and Hg (0.01) in the dry month. Respective sediment heavy metal concentrations for the rainy month were 22.22 ± 0.05 mg As/kg, 3.84 ± 0.34 mg Pb/kg, 1.53 ± 0.15 mg Cd/kg, 1.43 mg Cr/kg, and 0.03 mg Hg/kg. Generally, the risk indices showed high values in the rainy month and low values in the dry month, especially for As and Cd—an indication of anthropogenic influence. Correlation coefficient analysis for Pb and Cd showed a strong positive correlation (r = 0.99, p < 0.01)—this may suggest a similar source or similar transport behavior. Special attention needs to be paid with regard to rainy season As and Cd enrichment in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulqaderismaeel, W., & Kusag, A. (2015). Enrichment factor and geo-accumulation index for heavy metals at industrial zone in Iraq. IOSR J. Appl. Geol. Geophys, 3, 2321–2990.

    Google Scholar 

  • Ahmed, A. A., Vanaker, V., Ismael, U. H., & Al-Weshah, R. (2007). Overview of sediment problems in Nile Basin. Proceeding of the Nile Project (pp. 423-435). Switzerland: UNESCO.

  • Akpan, E. R., Ekpe, U. J., & Ibok, U. J. (2002). Heavy metal trends in the Calabar River, Nigeria. Environmental Geology, 42(1), 47–51. https://doi.org/10.1007/s00254-001-0479-6.

    Article  CAS  Google Scholar 

  • Ali, Z., Malik, R., Shinwari, Z., & Qadir, A. (2015). Enrichment, risk assessment, and statistical apportionment of heavy metals in tannery-affected areas. International journal of Environmental Science and Technology, 12(2), 537–550.

    Article  CAS  Google Scholar 

  • Almås, Å., Kweyunga, C., & Manoko, M. (2009). Investigation of trace metal concentrations in soil sediments and waters in the vicinity of “Geita Gold Mine” and “North Mara Gold Mine” in North West Tanzania. In IPM REPORT. Oslo: Norwegian University of Life Sciences.

    Google Scholar 

  • APHA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). Washington: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Bartzke, G. S., Ogutu, J. O., Mukhopadhyay, S., Mtui, D., Dublin, H. T., & Piepho, H. P. (2018). Rainfall trends and variation in the Maasai Mara ecosystem and their implications for animal population and biodiversity dynamics. PLoS One, 13(9), e0202814. https://doi.org/10.1371/journal.pone.0202814.

    Article  CAS  Google Scholar 

  • Bitala, M. F., Kweyunga, C., & Manoko, M. L. (2009). Levels of heavy metals and cyanide in soil, sediment and water from the vicinity of North Mara Gold Mine in Tarime District, Tanzania. A Report Presented to the Christian Council of Tanzania, Dodoma. Dar Es Salaam, Tanzania.

  • Burton, J., & Allen, G. (2002). Sediment quality criteria in use around the world. The Japanese Society of Limnology, 3, 65–75. https://doi.org/10.1007/s102010200008.

    Article  CAS  Google Scholar 

  • Byrne, P., Wood, P., & Reid, I. (2012). The impairment of river systems by metal mine contamination: a review including remediation options. Critical Reviews in Environmental Science and Technology, 42(19), 2017–2077.

    Article  CAS  Google Scholar 

  • Charzyński, P., Plak, A., & Hanaka, A. (2017). Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research, 24(5), 4801–4811.

    Article  CAS  Google Scholar 

  • Chiba, W., Passerini, M., Baio, J. A. F., Torres, J., & Tundisi, J. G. (2011). Seasonal study of contamination by metal in water and sediment in a sub-basin in the southeast of Brazil. Brazilian Journal of Biology, 71(4), 833–843.

    Article  Google Scholar 

  • Chileshe, M. N., Syampungani, S., Festin, E. S., Tigabu, M., Daneshvar, A., & Odén, P. C. (2019). Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. Journal of Forestry Research, 1–11.

  • Dadzie, E. S. (2012). Assessment of heavy metal contamination of the Densu River, Weija from Leachate. Kwame Nkrumah University of Science and Technology (KNUST), Accra, Ghana.

  • Davies, T., & Mundalamo, H. (2010). Environmental health impacts of dispersed mineralisation in South Africa. Journal of African Earth Sciences, 58(4), 652–666.

    Article  CAS  Google Scholar 

  • Dinwiddie, E., & Liu, X.-M. (2018). Examining the geologic link of arsenic contamination in groundwater in Orange County, North Carolina. Frontiers in Earth Science, 6, doi:https://doi.org/10.3389/feart.2018.00111.

  • Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229(8), 272.

    Article  CAS  Google Scholar 

  • Edgar, N. (2016). Impact of land use and land cover change on stream flow in Nyangores sub-catchment Mara River. Kenya: Kenyatta University, Nairobi, Kenya.

    Google Scholar 

  • El-Hamid, H., & Hegazy, T. (2017). Evaluation of water quality pollution indices for groundwater resources of new Damietta, Egypt. MOJ Ecology Environmental Science, 2(6), 00045.

    Google Scholar 

  • Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.

    Article  CAS  Google Scholar 

  • Fernandez-Luqueno, F., López-Valdez, F., Gamero-Melo, P., Luna-Suárez, S., Aguilera-González, E. N., Martínez, A. I., et al. (2013). Heavy metal pollution in drinking water-a global risk for human health: a review. African Journal of Environmental Science and Technology, 7(7), 567–584.

    Google Scholar 

  • Fosu-Mensah, B. Y., Addae, E., Yirenya-Tawiah, D., & Nyame, F. (2017). Heavy metals concentration and distribution in soils and vegetation at Korle Lagoon area in Accra, Ghana. Cogent Environmental Science, 3(1), 1405887.

    Article  CAS  Google Scholar 

  • Garcia, M. E., Betancourt, O., Cueva, E., & Gimaraes, J. R. (2012). Mining and seasonal variation of the metals concentration in the Puyango River basin—Ecuador

  • Gómez-álvarez, A., Valenzuela-García, J. L., Meza-Figueroa, D., de la O-Villanueva, M., Ramírez-Hernández, J., Almendariz-Tapia, J., et al. (2011). Impact of mining activities on sediments in a semi-arid environment: San Pedro River, Sonora, Mexico. Applied Geochemistry, 26(12), 2101–2112. https://doi.org/10.1016/j.apgeochem.2011.07.008.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hassaan, M. A., El Nemr, A., & Madkour, F. F. (2016). Environmental assessment of heavy metal pollution and human health risk. American Journal of Water Science and Engineering, 2(3), 14–19.

    Google Scholar 

  • Hounkpè, J., Kélomè, N., Adèchina, R., & Lawani, R. (2017). Assessment of heavy metals contamination in sediments at the lake of Ahémé in southern of Benin (West Africa). Journal of Materials and Environmental Sciences, 8(12), 4369–4377.

    Article  Google Scholar 

  • Huang, L., Fang, H., Ni, K., Yang, W., Zhao, W., He, G., Han, Y., & Li, X. (2018). Distribution and potential risk of heavy metals in sediments of the Three Gorges Reservoir: the relationship to environmental variables. Water, 10(12), 1840.

    Article  CAS  Google Scholar 

  • Jiang, X., Lu, W., Zhao, H., Yang, Q., & Yang, Z. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610.

    Article  Google Scholar 

  • Kihampa, C., & Wenaty, A. (2013). Impact of mining and farming activities on water and sediment quality of the Mara river basin, Tanzania. Research Journal of Chemical Sciences, 2231, 606X.

    Google Scholar 

  • Kiragu, G. M. (2009). Assessment of suspended sediment loadings and their impact on the environmental flows of upper transboundary Mara River, Kenya. Nairobi: Jomo Kenyatta University of Agriculture and Technology.

    Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–a review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    Article  CAS  Google Scholar 

  • Krika, A., & Krika, F. (2018). Assessment of heavy metals pollution in water and sediments of Djendjen river, north eastern Algeria. Pollution, 4(3), 495–502.

    CAS  Google Scholar 

  • Kuriata-Potasznik, A., Szymczyk, S., Skwierawski, A., Glińska-Lewczuk, K., & Cymes, I. (2016). Heavy metal contamination in the surface layer of bottom sediments in a flow-through lake: a case study of lake symsar in northern Poland. Water, 8(8), 358.

    Article  CAS  Google Scholar 

  • Lawley, C. J., Selby, D., Condon, D., & Imber, J. (2014). Palaeoproterozoic orogenic gold style mineralization at the southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: Implications from U–Pb titanite geochronology. Gondwana Research, 26(3–4), 1141–1158.

    Article  CAS  Google Scholar 

  • Li, H., Yang, J., Ye, B., & Jiang, D. (2019). Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River. Environmental Geochemistry and Health, 41(3), 1459–1472.

    Article  CAS  Google Scholar 

  • Lucia, M., André, J.-M., Gontier, K., Diot, N., Veiga, J., & Davail, S. (2010). Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic Coast of France. Archives of Environmental Contamination and Toxicology, 58(3), 844–853.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., & Ingersoll, C. G. (2002). A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems. In G. L. N. P. O. US Environmental Protection Agency (Ed.). US Environmental Protection Agency: US Environmental Protection Agency.

  • Majnoni, F., Alipour, H., HASANPOUR, M., Banagar, G., & Ajorlo, M. (2015). Assessment of Cd, Cr and Pb pollution in sediment and water of Gheshlagh River, Iran, in September 2013.

  • Mataba, G. R., Verhaert, V., Blust, R., & Bervoets, L. (2016). Distribution of trace elements in the aquatic ecosystem of the Thigithe river and the fish Labeo victorianus in Tanzania and possible risks for human consumption. Science of the Total Environment, 547, 48–59.

    Article  CAS  Google Scholar 

  • McClain, M. E., Subalusky, A. L., Anderson, E. P., Dessu, S. B., Melesse, A. M., Ndomba, P. M., Mtamba, J. O. D., Tamatamah, R. A., & Mligo, C. (2014). Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrological Sciences Journal, 59(3–4), 801–819. https://doi.org/10.1080/02626667.2013.853121.

    Article  CAS  Google Scholar 

  • Merket, H. (Ed.). (2018). Mapping artisanal and small-scale mining in Northwest Tanzania: a survey on its nature, scope and impact. Antwerp (Belgium) and Mwanza (Tanzania): International Peace Information Service vzw (IPIS).

  • Mohamed, N. K., Ntarisa, A. V., Makundi, I., & Kučera, J. (2016). Impact of North Mara gold mine on the element contents in fish from the river Mara, Tanzania. Journal of Radioanalytical and Nuclear Chemistry, 309(1), 421–427.

    Article  CAS  Google Scholar 

  • Mohiuddin, K., Ogawa, Y., Zakir, H., Otomo, K., & Shikazono, N. (2011). Heavy metals contamination in water and sediments of an urban river in a developing country. International Journal of Environmental Science and Technology, 8(4), 723–736.

    Article  CAS  Google Scholar 

  • Msafiri, A. G. (2014). Ethics of land justice and use in Tanzania today: a quest for paradigm shift. Journal of Land and Society, 1(1), 1–13.

    Google Scholar 

  • Mutie, S., Mati, B., Gadain, H., & Home, P. (2005) Land cover change effects on flow regime of Mara River. In 2nd International ISCRAM Conference Brussels, Belgium, (pp. 237–246): Information Systems for Crisis Response and Management.

  • Näykki, T., Perämäki, P., Kujala, J., & Mikkonen, A. (2001). Optimization of a flow injection hydride generation atomic absorption spectrometric method for the determination of arsenic, antimony and selenium in iron chloride/sulfate-based water treatment chemical. Analytica Chimica Acta, 439(2), 229–238.

    Article  Google Scholar 

  • Nile Basin Initiative (2008). Mara River Basin Monograph. In NILE EQUATORIAL LAKES SUBSIDIARY ACTION PROGRAM (Ed.), Mara River Basin Transboundary Integrated Water Resources Management and Development Project (pp. 1–446).

  • Nwineewii, J., Edori, O., & Onuchukwu, P. (2018). Concentration, ecological risk and enrichment factor assessment of selected heavy metals in sediments from New Calabar River, Nigeria. Journal of Applied Sciences and Environmental Management, 22(10), 1643–1647.

    Article  CAS  Google Scholar 

  • Nyairo, W. N., Owuor, P. O., & Kengara, F. O. (2015). Effect of anthropogenic activities on the water quality of Amala and Nyangores tributaries of River Mara in Kenya. Environmental monitoring and assessment, 187(11), 691.

  • Nzeyimana, L. (2003). Rusumo Dam – Social challenges in Kagera River basin: participation of the affected people. Linköping: Linköping University.

    Google Scholar 

  • O’Sullivan, J. J., Lupakisyo Mwalwiba, G., Purcell, P. J., Turner, J. N., & Mtalo, F. (2016). Assessing sediment and water quality issues in expanding African wetlands: the case of the Mara River, Tanzania. International Journal of Environmental Studies, 73(1), 95–107. https://doi.org/10.1080/00207233.2015.1116226.

    Article  CAS  Google Scholar 

  • Ogoyi, D., Mwita, C., Nguu, E., & Shiundu, P. (2011). Determination of heavy metal content in water, sediment and microalgae from Lake Victoria, East Africa. The Open Environmental Engineering Journal, 4 (1).

  • Ouabo, R. E., Ogundiran, M. B., Sangodoyin, A. Y., & Babalola, B. A. (2019). Ecological risk and human health implications of heavy metals contamination of surface soil in e-waste recycling sites in Douala, Cameroun. Journal of Health and Pollution, 9(21), 190310.

    Article  Google Scholar 

  • Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L. A., et al. (2018). Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arabian Journal of Geosciences, 11(22), 692. https://doi.org/10.1007/s12517-018-4021-5.

    Article  CAS  Google Scholar 

  • Outa, J. O., Kowenje, C. O., Plessl, C., & Jirsa, F. (2020). Distribution of arsenic, silver, cadmium, lead and other trace elements in water, sediment and macrophytes in the Kenyan part of Lake Victoria: spatial, temporal and bioindicative aspects. Environmental Science and Pollution Research, 27(2), 1485–1498.

    Article  CAS  Google Scholar 

  • Pandey, R., Raghuvanshi, D., & Dixhit, A. (2015). Characterization of heavy metals in water and sediment of River Ganga through index analysis approach. (Vol. 40, pp. 158-166): Discovery.

  • Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52(10), 1197–1208.

    Article  CAS  Google Scholar 

  • Rabee, A. M., Al-Fatlawy, Y. F., & Nameer, M. (2011). Using pollution load index (PLI) and geoaccumulation index (I-Geo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad region. Al-Nahrain Journal of Science, 14(4), 108–114.

    Google Scholar 

  • Raeisi, S., Rad, J. S., Rad, M. S., & Zakariaei, H. (2014). Analysis of heavy metals content in water, sediments and fish from the Gorgan bay, southeastern Caspian Sea, Iran. International Journal of Advanced Biological and Biomedical Research, 2(6), 2162–2172.

    CAS  Google Scholar 

  • Rügner, H., Schwientek, M., Milačič, R., Zuliani, T., Vidmar, J., Paunović, M., Laschou, S., Kalogianni, E., Skoulikidis, N. T., Diamantini, E., Majone, B., Bellin, A., Chiogna, G., Martinez, E., López de Alda, M., Díaz-Cruz, M. S., & Grathwohl, P. (2019). Particle bound pollutants in rivers: results from suspended sediment sampling in Globaqua River basins. Science of the Total Environment, 647, 645–652.

    Article  CAS  Google Scholar 

  • Rwetabula, J., De Smedt, F., Rebhun, M., & Mwanuzi, F. (2005) Transport of micropollutants and phosphates in the Simiyu river (tributary of Lake Victoria), Tanzania. In Submitted and presented at The 1 st International Conference on Environmental Science and Technology, New Orleans, Louisiana, USA January 23–26 th.

  • Rwiza, M. J., Kim, K. W., & Kim, S. d. (2016). Geochemical distribution of trace elements in groundwater from the North Mara large-scale gold mining area of Tanzania. Groundwater Monitoring & Remediation, 36(2), 83–93.

    Article  CAS  Google Scholar 

  • Saher, N. U., & Siddiqui, A. S. (2019). Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere, 221, 89–98. https://doi.org/10.1016/j.chemosphere.2019.01.008.

    Article  CAS  Google Scholar 

  • Sany Tavakoly, B. A., Salleh, A. H., Sulaiman, A. M., & Monazami, G. (2011). Geochemical assessment of heavy metals concentration in surface sediment of West Port, Malaysia. International Journal of Geological and Environmental Engineering, 5 (8).

  • Sany Tavakoly, S. B., Salleh, A., Sulaiman,A. H., Sasekumar A., Tehrani, G., et al. (2012). Distribution characteristics and ecological risk of heavy metals in surface sediments of West Port, Malaysia. Environment Protection Engineering, 38 (4), doi:https://doi.org/10.5277/EPE120412.

  • Sany, S. B. T., Hashim, R., Salleh, A., Rezayi, M., & Safari, O. (2015). Ecological quality assessment based on macrobenthic assemblages indices along West Port, Malaysia coast. Environmental Earth Sciences, 74(2), 1331–1341.

    Article  Google Scholar 

  • Seeteram, N. A., Hyera, P. T., Kaaya, L. T., Lalika, M. C. S., & Anderson, E. P. (2019). Conserving rivers and their biodiversity in Tanzania. Water, 11(12). https://doi.org/10.3390/w11122612.

  • Shanbehzadeh, S., Vahid Dastjerdi, M., Hassanzadeh, A., & Kiyanizadeh, T. (2014). Heavy metals in water and sediment: a case study of Tembi River. Journal of Environmental and Public Health, 2014, 15.

    Article  CAS  Google Scholar 

  • Shikuku, K. M., Winowiecki, L., Twyman, J., Eitzinger, A., Perez, J. G., Mwongera, C., & Läderach, P. (2017). Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa. Climate Risk Management, 16, 234–245.

    Article  Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312(1–4), 14–27.

    Article  CAS  Google Scholar 

  • Smodiš, B., Annareddy, V.R.R., & Rossbach, M. (2003). Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. In N. a. H.-R. E. S. section (Ed.). Vienna, Austria: IAEA.

  • Ssegane, H. (2007). Tools for remotely assessing riparian buffers protecting streams from sediment pollution. Uga,

  • Taft, R. A., & Jones, C. (2001). Sediment sampling guide and methodologies (2nd Edn ed.). In State of Ohio Environmental Protection Agency: Lazarus Government Center.

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology: volume 3: environmental toxicology (pp. 133–164). Basel: Springer Basel.

    Chapter  Google Scholar 

  • TRCS. (2019). Floods in Mara region. Emergency Plan of Action (EPoA) Tanzania. Tanzania: TRCS.

    Google Scholar 

  • USEPA (1994). Standard operating procedures: sediment sampling. SOP 2016 (pp. 1-22). USA: scientific engineering response and analytical services (SERAS).

  • Wang, N. (2014). Studies in the atomic spectrometric determination and speciation of arsenic in environmental samples. University of Massachusetts Amherst,

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Wei, W., Ma, R., Sun, Z., Zhou, A., Bu, J., Long, X., & Liu, Y. (2018). Effects of mining activities on the release of heavy metals (HMs) in a typical mountain headwater region, the Qinghai-Tibet Plateau in China. International Journal of Environmental Research and Public Health, 15(9), 1987.

    Article  CAS  Google Scholar 

  • Wenning, R., & Ingersoll, C. (2002). Summary of the SETAC Pellston Workshop on use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Fairmont: Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • WHO. (2007). Health risks of heavy metals from long-range transboundary air pollution. Copenhagen: WHO Regional Office for Europe.

    Google Scholar 

  • Yahaya, M., Mohammad, S., & Abdullahi, B. (2009). Seasonal variations of heavy metals concentration in abattoir dumping site soil in Nigeria. Journal of Applied Sciences and Environmental Management, 13 (4).

  • Younger, P. L., & Wolkersdorfer, C. (2004). Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water and the Environment, 23, s2–s80.

    Article  Google Scholar 

  • Zarezadeh, R., Rezaee, P., Lak, R., Masoodi, M., & Ghorbani, M. (2017). Distribution and accumulation of heavy metals in sediments of the northern part of mangrove in Hara Biosphere Reserve, Qeshm Island (Persian Gulf). Soil and Water Research, 12(2), 86–95.

    Article  CAS  Google Scholar 

  • Zermoglio, F., Scott, O., & Said, M. (2019). Vulnerability and adaptation in the Mara River Basin (p. 20006). Washington: USAID.

    Google Scholar 

  • Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74(6), 5097–5110.

    Article  CAS  Google Scholar 

  • Zhuang, W., & Gao, X. (2014). Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Ccomparison among typical marine sediment quality indices. PLoS One, 9(4), e94145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Centre for Water Infrastructure and Sustainable Energy Futures (WISE-Futures), a World Bank African Centre of Excellence (ACE). The authors thank the WISE-Futures for enhancing and promoting learning and research environment in Tanzania. The authors would also wish to thank all laboratory technicians at the Arusha Technical College (ATC) and all the technical staff at the Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania.

Availability of data and material

Not applicable.

Funding

The present study was supported by the Centre for Water Infrastructure and Sustainable Energy Futures (WISE-Futures), a World Bank African Centre of Excellence (ACE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwemezi J. Rwiza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkinda, M.S., Rwiza, M.J., Ijumba, J.N. et al. Quantitative assessment of metal contamination and associated pollution risk in sediments from the Mara River in Tanzania. Environ Monit Assess 192, 721 (2020). https://doi.org/10.1007/s10661-020-08681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08681-9

Keywords

Navigation