Skip to main content
Log in

Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater evaluation indices, multivariate statistical techniques, and geostatistical models are applied to assess the source apportionment and spatial variability of groundwater pollutants at the Lakshimpur district of Bangladesh. A total of 70 groundwater samples have been collected from wells (shallow to deep wells, i.e., 10–375 m) from the study area. Groundwater quality index reveals that 50 % of the water samples belong to good-quality water. The degrees of contamination, heavy metal pollution index, and heavy metal evaluation index present diversified results in samples even though they show significant correlations among them. The results of principal component analysis (PCA) show that groundwater quality in the study area mainly has geogenic (weathering and geochemical alteration of source rock) sources followed by anthropogenic source (agrogenic, domestic sewage, etc.). Cluster analysis and correlation matrix also supported the results of PCA. The Gaussian semivariogram models have been tested as the best fit models for most of the water quality indices and PCA components. The results of semivariogram models have shown that most of the variables have weak spatial dependence, indicating agricultural and residential/domestic influences. The spatial distribution maps of water quality parameters have provided a useful and robust visual tool for decision makers toward defining adaptive measures. This study is an implication to show the multiple approaches for quality assessment and spatial variability of groundwater as an effort toward a more effective groundwater quality management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikary PP, Chandrasekharan H, Chakraborty D, Kamble K (2010) Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ Monit Assess 167(1–4):599–615

    Article  Google Scholar 

  • Ahmed ZU, Panaullah GM, DeGloria SD, Duxbury JM (2011) Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping. Sci Total Environ 412–413:324–335

    Article  Google Scholar 

  • Al-Ami MY, Al-Nakib SM, Ritha NM, Nouri AM, Al-Assina A (1987) Water quality index applied to the classification and zoning of Al-Jaysh canal, Bagdad, Iraq. J Environ Sci Health A22:305–319

    Google Scholar 

  • APHA-AWWA-WEF (2005) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA and WEF, Washington DC, USA

    Google Scholar 

  • Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41:4566–4578

    Article  Google Scholar 

  • Astel A, Tsakovski S, Simeonov V, Reisenhofer E, Piselli S, Barbieri P (2008) Multivariate classification and modeling in surface water pollution estimation. Anal Bioanal Chem 390:1283–1292

    Article  Google Scholar 

  • Backman B, Bodis D, Lahermo P, Rapant S, Tarvainen T (1997) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36:55–64

    Article  Google Scholar 

  • Backman B, Bodiš D, Lahermo P, Rapant S, Tarvainen T (1998) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36(1–2):55–64

    Article  Google Scholar 

  • Banglapedia (2006) National encyclopedia of Bangladesh. Asiatic Society of Bangladesh, Dhaka. https://en.wikipedia.org/wiki/Banglapedia

  • Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Ahmed KM, Khan AA, Routh J (2002) Arsenic in groundwater of the Bengal Delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538–545

    Article  Google Scholar 

  • Bhuiyan MAH, Islam MA, Dampare SB, Parvez L, Suzuki S (2010) Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. J Hazard Mater 179:1065–1077. doi:10.1016/j.jhazmat.2010.03.114

    Article  Google Scholar 

  • Bhuiyan MAH, Rakib MA, Dampare SB, Ganyaglo S, Suzuki S (2011a) Surface water quality assessment in the central part of Bangladesh using multivariate analysis. KSCE J Civil Engineer 15(6):995–1003. doi:10.1007/s12205-011-1079-y

    Article  Google Scholar 

  • Bhuiyan MAH, Suruvi NH, Dampare SB, Islam MA, Quraishi SB, Ganyaglo S, Suzuki S (2011b) Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environ Monit Assess 175:633–649. doi:10.1007/s10661-010-1557-6

    Article  Google Scholar 

  • Bhuiyan MAH, Dampare SB, Islam MA, Suzuki S (2015) Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ Monit Assess 187:4075. doi:10.1007/s10661-014-4075-0

    Article  Google Scholar 

  • Birth G (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe CD, Furness RA (eds) Coastal GIS. Wollongong University Papers in Center for Maritime Policy, Australia

    Google Scholar 

  • BIS (Bureau of Indian Standards) (2012) Indian Standard drinking water-specification, 1st rev., pp 1–8

  • Bromfield SM (1978) The oxidation of manganous ions under acidic conditions byan acidophilousactinomycete from acid soil. Aust J Soil Res 16:91–100

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere 87:945–953

    Article  Google Scholar 

  • Chapagain SK, Pandey VP, Shrestha S, Nakamura T, Kazama F (2010) Assessment of deep groundwater quality in Kathmandu valley using multivariate statistical techniques. Water Air Soil Pollut 210:277–288. doi:10.1007/s11270-009-0249-8

    Article  Google Scholar 

  • Danielsson A, Cato I, Carman R, Rahm L (1999) Spatial clustering of metals in the sediments of Skagerrak/Kattegat. Appl Geochem 14:689–706

    Article  Google Scholar 

  • Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Res 1:251–266

    Article  Google Scholar 

  • DoE (Department of Environment) (1997) The environment conservation rules 1997. Government of the People’s Republic of Bangladesh, Dhaka

    Google Scholar 

  • Dragovíc S, Mihailovíc N, Gajíc B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–549

    Article  Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 5:295–304

    Article  Google Scholar 

  • Elogne S, Hristopulos D, Varouchakis E (2008) An application of Spartan spatial random fields in environmental mapping: focus on automatic mapping capabilities. Stochastic Environ Res Risk Assess 22(5):633–646

    Article  Google Scholar 

  • ESRI (2009) ArcGIS desktop software. ArcGIS Desktop 9.3., Redlands

  • Fernandes PG, Carreira P, da Silva MO (2008) Anthropogenic sources of contamination recognition—Sines coastal aquifer (SW Portugal). J Geochem Explor 98:1–14

    Article  Google Scholar 

  • Franco-Uría AC, López-Mateo E, Roca ML, Fernández-Marcos (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, New York

    Google Scholar 

  • Gorai AK, Kumar S (2013) Spatial distribution analysis of groundwater quality index using GIS: a case study of Ranchi Municipal Corporation (RMC) area. Geoinfor Geostat Overview 1:2

    Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics, 1st edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Guler C, Kurt MA, Alpaslan M, Akbulut C (2012) Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J Hydrol 414–415:435–451

    Article  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Oda K, Hiroshiro Y, Jinno K (2010) Arsenic in shallow aquifer in the eastern region of Bangladesh: insights from principal component analysis of groundwater compositions. Environ Monit Assess 61:453–472. doi:10.1007/s10661-009-0760-9

    Article  Google Scholar 

  • Handa BK (1981) An integrated water-quality index for irrigation use. Indian J Agric Sci 51:422–426

    Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 22:1602–1606

    Article  Google Scholar 

  • Heberger K, Milczewska K, Voelkel A (2005) Principal component analysis of polymer-solvent and filler-solvent interactions by inverse gas chromatography. Colloids Surf A 260:29–37

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernández JM, Fernández L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  Google Scholar 

  • Horton RK (1965) An index systems for rating water quality. J Water Pollut Control Fed 37:300–306

    Google Scholar 

  • Hu K, Li B, Lu Y, Zhang F (2004) Comparison of various spatial interpolation methods for non-stationary regional soil mercury content. Environ Sci 25(3):132–137

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Islam IR, Rahman M, Reza AHMS, Rahman M (2013) Groundwater geochemistry and its implication for arsenic enrichment and mobilization in shallow alluvial aquifers of Pakshi Union, Ishwardi, Pabna, Bangladesh. Int J Chem Mater Sci 1(4):069–078

    Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lattin J, Carrol D, Green P (2003) Analyzing multivariate data. Duxbury Press, Belmont

    Google Scholar 

  • Li Z, Fang Y, Zeng G, Li J, Zhang Q, Yuan Q, Wang Y, Ye F (2009) Temporal and spatial characteristics of surface water quality by an improved universal pollution index in red soil hilly region of South China: a case study in Liuyanghe River watershed. Environ Geol 58:101–107

    Article  Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Article  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Sci Total Environ 313:77–89

    Article  Google Scholar 

  • Machiwal D, Jha MK (2015) Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Region Stud, J Hydrol. doi:10.1016/j.ejrh.2014.11.005

    Google Scholar 

  • Marko K, Al-Amri NS, Elfeki AMM (2014) Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arab J Geosci 7:5239–5252. doi:10.1007/s12517-013-1156-2

    Article  Google Scholar 

  • Masoud AA (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sci 95:123–137. doi:10.1016/j.jafrearsci.2014.03.006

    Article  Google Scholar 

  • Masoud AA, Atwia MG (2010) Spatio-temporal characterization of the Pliocene aquifer conditions in Wadi El-Natrun area, Egypt. J Environ Earth Sci 62(7):1361–1374

    Article  Google Scholar 

  • Mohan SV, Nithila P, Reddy SJ (1996) Estimation of heavy metal in drinking water and development of heavy metal pollution index. J Environ Sci Health A31:283–289

    Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Persp 121(3):295–302

    Article  Google Scholar 

  • Nayanaka VGD, Vitharana WAU, Mapa RB (2010) Geostatistical analysis of soil properties to support spatial sampling in a paddy growing alfisol. Trop Agric Res 22(1):34–44. doi:10.4038/tar.v22i1.2668

    Google Scholar 

  • Nimic DA, Moore JN (1991) Prediction of water-soluble metal concentrations in fluvially deposited tailings sediments, Upper Clark Fork Valley, Montana, U.S.A. Appl Geochem 6:635–646

    Article  Google Scholar 

  • Nkansah K, Dawson-Andoh B, Slahor J (2010) Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: part 1 yellow-poplar (Liriodendron tulipifera L.). Bioresour Technol 101(2):4570–4576

    Article  Google Scholar 

  • Omo-Irabor OO, Olobaniyi SB, Oduyemi K, Akunna J (2008) Surface and groundwater water quality assessment using multivariate analytical methods: a case study of the Western Niger Delta, Nigeria. Phys Chem Earth 33:666–673

    Article  Google Scholar 

  • Prasad B, Bose JM (2001) Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ Geol 41:183–188

    Article  Google Scholar 

  • Prasad B, Jaiprakas KC (1999) Evaluation of heavy metals in ground water near mining area and development of heavy metal pollution index. J Environ Sci Health A34:91–102

    Article  Google Scholar 

  • Rahman MS, Gagnon GA (2014) Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Res 48:137–147. doi:10.1016/j.watres.2013.09.018

    Article  Google Scholar 

  • Reddy SJ (1995) Encyclopaedia of environmental pollution and control, vol 1. Karlia, Environmental Media, p 342

    Google Scholar 

  • Reza AHMS, Jean J-S, Lee M-K, Liu C-C, Bundschuh J, Yang H-J, Lee J-F, Lee Y-C (2010a) Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southwestern (Chadpur) Bangladesh. Water Res 44:5556–5574

    Article  Google Scholar 

  • Reza AHMS, Jean J-S, Yang H-J, Lee M-K, Woodall B, Liu C-C, Lee JF, Luo S-D (2010b) a). Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj district, Northwestern Bangladesh. Water Res 44(6):2021–2037

    Article  Google Scholar 

  • Sahu P, Sikdar PK (2008) Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal. India Environ Geol 55:823–835

    Article  Google Scholar 

  • Sahu BK, Panda RB, Sinha BK, Nayak A (1991) Water quality index of the River Brahmani at Rourkela industrial complex of Orissa. J Ecotoxicol Environ Monit 1:169–175

    Google Scholar 

  • Sarbu C, Pop HF (2005) Principal component analysis versus fuzzy principal component analysis. A case study: the quality of Danube water (1985e 1996). Talanta 65(5):1215–1220

    Article  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Soft 22:464–475

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study. Anal Chim Acta 538:355–374

    Article  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Org 78:1093–1103

    Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics. Pearson/Allyn and Bacon, London

    Google Scholar 

  • Varouchakis EA, Hristopulos DT (2013) Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Adv Water Resour 52:34–49

    Article  Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Ganthi RR, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Ass. doi:10.1007/s10661-009-1302-1

  • Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, Chichester

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 3rd ed, vol. 1, Recommendations. WHO, Geneva

  • Wunderlin DA, Diaz M, Ame MMV, Pesce SF, Hued AC, Bistoni M (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (Cordoba-Artgentina). Water Res 35:2881–2894

    Article  Google Scholar 

  • Zou J, Zhang J, Wu J, Zhong F, Gu T (1988) On organic pollution and its control in the Haibe estuarine area of the Bohai Bay. Stud Mar Sin 29:1–20

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Chemistry Division, Atomic Energy Center, Dhaka. The authors gratefully acknowledge the authority of the Department of Environmental Sciences, Jahangirnagar University, Bangladesh, for logistic supports for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amir Hossain Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.A.H., Bodrud-Doza, M., Islam, A.R.M.T. et al. Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis. Environ Earth Sci 75, 1020 (2016). https://doi.org/10.1007/s12665-016-5823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5823-y

Keywords

Navigation