Skip to main content
Log in

Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermo-physical properties for four rock types (granite, granodiorite, gabbro, and garnet amphibolite) from room temperature to 1,173 K were investigated. Thermal diffusivity and specific heat capacity were measured using the laser-flash technique and heat flux differential scanning calorimetry, respectively. Combined with the density data, rock thermal conductivities were calculated. Rock thermal diffusivity and conductivity decrease as the temperature increases and approach a constant value at high temperatures. At room temperature, the measured thermal conductivity is consistently near or lower than the calculated conductivity using the mineral series model, which suggests that real thermal conduction is more complicated than is depicted in the model. Therefore, in situ measurement remains the best method for accurately obtaining thermal conductivity for rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sass JH, Lachenbruch AH, Munroe RJ. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J Geophys Res. 1971;76(14):3391–401. doi:10.1029/JB076i014p03391.

    Article  Google Scholar 

  2. van den Berg AP, Yuen DA. Delayed cooling of the earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone. Earth Planet Sci Lett. 2002;199(3–4):403–13.

    Article  Google Scholar 

  3. Birch F, Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci. 1940;238(9):613–35.

    Article  Google Scholar 

  4. Hofmeister AM. Thermal diffusivity of garnets at high temperature. Phys Chem Miner. 2006;33(1):45–62.

    Article  CAS  Google Scholar 

  5. Ohta K, Yagi T, Taketoshi N, Hirose K, Komabayashi T, Baba T, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary. Earth Planet Sci Lett. 2012;349–350:109–15.

    Article  Google Scholar 

  6. Pohlmann C, Hutsch T, Röntzsch L, Weißgärber T, Kieback B. Novel approach for thermal diffusivity measurements in inert atmosphere using the flash method. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3048-9.

    Google Scholar 

  7. Hofmeister AM. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science. 1999;283(5408):1699–706.

    Article  CAS  Google Scholar 

  8. Chapman DS. Thermal gradients in the continental crust. Geol Soc Spec Publ. 1986;24(1):63–70.

    Article  Google Scholar 

  9. Parker WJ, Jenkins RJ, Abbott GL, Butler CP. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32(9):1679–84.

    Article  CAS  Google Scholar 

  10. Branlund JM, Hofmeister AM. Thermal diffusivity of quartz to 1,000 degrees C: effects of impurities and the alpha-beta phase transition. Phys Chem Miner. 2007;34(8):581–95.

    Article  CAS  Google Scholar 

  11. Pertermann M, Whittington AG, Hofmeister AM, Spera FJ, Zayak J. Transport properties of low-sanidine single-crystals, glasses and melts at high temperature. Contrib Mineral Petrol. 2008;155(6):689–702.

    Article  CAS  Google Scholar 

  12. Hofmeister A, Whittington A, Pertermann M. Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to high temperature. Contrib Mineral Petrol. 2009;158(3):381–400.

    Article  CAS  Google Scholar 

  13. Hofmeister AM, Pertermann M. Thermal diffusivity of clinopyroxenes at elevated temperature. Eur J Mineral. 2008;20(4):537–49.

    Article  CAS  Google Scholar 

  14. Pertermann M, Hofmeister AM. Thermal diffusivity of olivine-group minerals at high temperature. Am Mineral. 2006;91(11–12):1747–60.

    Article  CAS  Google Scholar 

  15. Whittington AG, Hofmeister AM, Nabelek PI. Temperature-dependent thermal diffusivity of the earth’s crust and implications for magmatism. Nature. 2009;458(7236):319–21.

    Article  CAS  Google Scholar 

  16. Nabelek PI, Whittington AG, Hofmeister AM. Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: implications of temperature-dependent thermal diffusivity and rheology. J Geophys Res. 2010;115(B12):B12417. doi:10.1029/2010jb007727.

    Article  Google Scholar 

  17. Romine W, Whittington A, Nabelek P, Hofmeister A. Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water. Bull Volcanol. 2012;74(10):2273–87.

    Article  Google Scholar 

  18. Nabelek PI, Hofmeister AM, Whittington AG. The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett. 2012;317:157–64.

    Article  Google Scholar 

  19. Merriman JD, Whittington AG, Hofmeister AM, Nabelek PI, Benn K. Thermal transport properties of major archean rock types to high temperature and implications for cratonic geotherms. Precambrian Res. 2013;233:358–72.

    Article  CAS  Google Scholar 

  20. Rutkowski P, Piekarczyk W, Stobierski L, Górny G. Anisotropy of elastic properties and thermal conductivity of Al2O3/h-BN composites. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3246-5.

    Google Scholar 

  21. Li S, Wang S, Li X, Li Y, Liu S, Coulson IM. A new method for the measurement of meteorite bulk volume via ideal gas pycnometry. J Geophys Res. 2012;117(E10):E10001. doi:10.1029/2012je004202.

    Article  Google Scholar 

  22. Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109(1):295–300.

    Article  CAS  Google Scholar 

  23. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3064-9.

    Google Scholar 

  24. Hirono T, Hamada Y. Specific heat capacity and thermal diffusivity and their temperature dependencies in a rock sample from adjacent to the Taiwan Chelungpu fault. J Geophys Res. 2010;115(B5):B05313. doi:10.1029/2009jb006816.

    Article  Google Scholar 

  25. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. J Therm Anal Calorim. 2007;90(3):653–62.

    Article  CAS  Google Scholar 

  26. Saxena SK. Earth mineralogical model: Gibbs free energy minimization computation in the system MgO–FeO–SiO2. Geochim Cosmochim Acta. 1996;60(13):2379–95.

    Article  CAS  Google Scholar 

  27. Seipold U. Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics. 1998;291(1–4):161–71.

    Article  Google Scholar 

  28. Wang J, Carson JK, North MF, Cleland DJ. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int J Heat Mass Transf. 2008;51(9–10):2389–97.

    Article  CAS  Google Scholar 

  29. Branlund JM, Hofmeister AM. Heat transfer in plagioclase feldspars. Am Mineral. 2012;97(7):1145–54.

    Article  CAS  Google Scholar 

  30. Clauser C, Huenges E. Thermal conductivity of rocks and minerals. Rock phys phase relat. 1995;3:105–26.

    Article  Google Scholar 

  31. Kukkonen IT. Thermal properties of rocks at the investigation sites: measured and calculated thermal conductivity, specific heat capacity and thermal diffusivity. Helsinki, Finland. Geological Survey of Finland. 1998. 9798/97/AJH.

  32. Christensen NI, Mooney WD. Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res. 1995;100(B6):9761–88. doi:10.1029/95JB00259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was performed under Project supported by “135” Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, S.Q., Li, H.P. & Chen, G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim 115, 1057–1063 (2014). https://doi.org/10.1007/s10973-013-3427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3427-2

Keywords

Navigation