Skip to main content
Log in

Opposition decided gradient-based optimizer with balance analysis and diversity maintenance for parameter identification of solar photovoltaic models

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The solar photovoltaic (PV) parameter estimation/identification is a complicated optimization process that directly affects the performance of PV systems if the internal parameters of PV cells are not estimated accurately. Finding the precise and accurate parameters of PV models is the primary gateway to the PV system design to mimic their actual behavior. Numerous optimization algorithms are used to find the cell/module parameters, however, most of these algorithms suffer from the high computational burden, local optima trap, and frequent parameter tuning to get the best results. A metaheuristic algorithm called gradient-based optimization algorithm (GOA) is recently introduced to solve numerical optimization and engineering design problems. Nevertheless, the GOA appears to be trapped in sub-optimal locations, increasing computational time to get the best results. Thus, this paper recommends an enhanced GOA by employing an opposition-based learning mechanism to generate more precise solutions. Therefore, this paper proposes an enhanced variant, called opposition-based GOA (OBGOA), to identify the electrical parameters of various PV models, such as the single-diode model (SDM) and double-diode model (DDM). Numerous experimental data profiles are considered to classify the parameters of the SDM and DDM. The obtained results show that the OBGOA can estimate accurate and precise parameters than the other algorithms. In addition, statistical data analysis of various algorithms is presented for all the PV models. The results demonstrated that the proposed OBGOA could find circuit parameters of the cell and the modules accurately and effectively. This study is backed up by additional online guidance and support at https://premkumarmanoharan.wixsite.com/mysite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

I p :

Photocurrent in A

I d :

Diode current in A

I sh :

Current through the shunt resistor in A

I :

Output current of the cell/module in A

V :

Output voltage of the cell/module in V

I sd,  I sd 1, and I sd 2 :

Reverse saturation current of the diodes in A

R p  and  R s :

Ohmic resistance of the cell in Ω

n,  n 1, and  n 2 :

Ideality factor of diodes

D :

Problem dimension

\({X1}_{n}^{t}\) :

Updated position of the population

\({x}_{best}\) and \({x}_{\text{worst}}\) :

Best and worst solutions, respectively

\({r}_{1}\text{,} {r}_{2}\text{,} {r}_{3}\text{,}\mathrm{ and}\, {r}_{4}\) :

Random integers between [0, D]

\({P}_{r}\) :

Probability rate

q :

Electron charge in C

k :

Boltzmann constant in J/K

T :

Absolute temperature in K

N s  and  N sh :

Series- and parallel-connected cells, respectively

X :

Number of data samples

Y :

Number of decision variables

N p :

Population size

IT max :

Maximum number of iterations

\({X}_{ub}\)  and \({X}_{lb}\) :

Upper and lower boundary limit

\({x}_{p}^{t}\) :

Randomly selected solution

\(\overline{X }\) :

Random opposite solution

I exp :

Experimental current sample in A

I est :

Estimated current in A

PV:

Photovoltaic

GOA:

Gradient-based optimization algorithm

OBL:

Opposition-based learning

OBGOA:

Opposition-based GOA

SDM:

Single-diode model

DDM:

Double-diode model

RES:

Renewable energy systems

STC:

Standard test condition

TDM:

Three-diode model

IJAYA:

Improved Jaya algorithm

TLBO:

Teaching–learning-based optimization

PSO:

Particle swarm optimization

FPA:

Flower pollination algorithm

ALO:

Ant lion optimization

MFO:

Moth-flame optimization

BFA:

Bacterial foraging algorithm

SFLA:

Shuffled frog leaping algorithm

FFO:

Firefly optimization

GWO:

Grey wolf optimization

WOA:

Whale optimization algorithm

SCA:

Sine–cosine algorithm

SSA:

Salp-swarm algorithm

COA:

Coyote optimization algorithm

HHO:

Harris Hawks optimizer

SMA:

Slime mould algorithm

EO:

Equilibrium optimizer

DE:

Differential evolution

ABC:

Artificial Bee Colony

MPA:

Marine-predator algorithm

RMSE:

Root mean square error

GSR:

Gradient search rule

DM:

Direction of movement

LEO:

Local escaping operator

NFL:

No-free-lunch

RE:

Relative error

IAE:

Integral absolute error

References

  • Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372

    Google Scholar 

  • Abdel-basset M, Mohamed R, Mirjalili S et al (2020) Solar photovoltaic parameter estimation using an improved equilibrium optimizer. Sol Energy 209:694–708

    Google Scholar 

  • Ahandani MA, Alavi-Rad H (2015) Opposition-based learning in shuffled frog leaping: an application for parameter identification. Inf Sci 291:19–42

    Google Scholar 

  • Ahmadianfar I, Bozorg-haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159

    MathSciNet  MATH  Google Scholar 

  • Allam D, Yousri DA, Eteiba MB (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers Manag 123:535–548

    Google Scholar 

  • Batzelis EI, Papathanassiou SA (2016) A method for the analytical extraction of the single-diode PV model parameters. IEEE Trans Sustain Energy 7:504–512

    Google Scholar 

  • Biswas PP, Suganthan PN, Wu G, Amaratunga GAJ (2019) Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew Energy 132:425–438

    Google Scholar 

  • Chaibi Y, Malvoni M, Allouhi A, Mohamed S (2019) Data on the I-V characteristics related to the SM55 monocrystalline PV module at various solar irradiance and temperatures. Data Brief 26:104527

    Google Scholar 

  • Chen H, Jiao S, Heidari AA et al (2019) An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers Manag 195:927–942

    Google Scholar 

  • Chin VJ, Salam Z, Ishaque K (2015) Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl Energy 154:500–519

    Google Scholar 

  • Cuevas E, Oliva D, Zaldivar D, Pajares G (2012) Opposition-based electromagnetism-like for global optimization. Int J Innov Comput Inf Control 8:8181–8198

    Google Scholar 

  • Diab AAZ, Sultan HM, Do TD et al (2020) Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access 8:111102–111140

    Google Scholar 

  • Drouiche I, Harrouni S, Hadj A (2018) A new approach for modelling the aging PV module upon experimental I – V curves by combining translation method and five-parameters model. Electr Power Syst Res 163:231–241

    Google Scholar 

  • Hasanien HM (2015) Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans Sustain Energy 6:509–515

    Google Scholar 

  • Ishaque K, Salam Z (2011) An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol Energy 85:2349–2359

    Google Scholar 

  • Ishaque K, Salam Z, Mekhilef S, Shamsudin A (2012) Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl Energy 99:297–308

    Google Scholar 

  • Jamadi M, Merrikh-Bayat F, Bigdeli M (2016) Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int J Energy Environ Eng 7:13–25

    Google Scholar 

  • Jiao S, Chong G, Huang C et al (2020) Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203:117804

    Google Scholar 

  • Jordehi AR (2016) Parameter estimation of solar photovoltaic (PV) cells: a review. Renew Sustain Energy Rev 61:354–371

    Google Scholar 

  • Kaveh M, Khishe M, Mosavi MR (2019) Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integr Circuits Signal Process 100:405–428

    Google Scholar 

  • Khanna V, Das BK, Bisht D et al (2015) A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy 78:105–113

    Google Scholar 

  • Khishe M, Mohammadi H (2019) Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm. Ocean Eng 181:98–108

    Google Scholar 

  • Khishe M, Mosavi MR (2019) Improved whale trainer for sonar datasets classification using neural network. Appl Acoust 154:176–192

    Google Scholar 

  • Khishe M, Mosavi MR (2020a) Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm. Appl Acoust 157:107005

    Google Scholar 

  • Khishe M, Mosavi MR (2020b) Chimp optimization algorithm. Expert Syst Appl 149:113338

    Google Scholar 

  • Khishe M, Safari A (2019) Classification of sonar targets using an MLP neural network trained by dragonfly algorithm. Wirel Pers Commun 108:2241–2260

    Google Scholar 

  • Khishe M, Mosavi MR, Moridi A (2018) Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation. Appl Acoust 137:121–139

    Google Scholar 

  • Krishnakumar N, Venugopalan R, Rajasekar N (2013) Bacterial foraging algorithm based parameter estimation of solar PV model. In: 2013 Annual international conference on emerging research areas, AICERA 2013 and 2013 international conference on microelectronics, communications and renewable energy, ICMiCR 2013 – proceedings, pp 1–6

  • Kumar C, Raj TD, Premkumar M, Raj TD (2020) A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik 223:165277

    Google Scholar 

  • Kumari PA, Geethanjali P (2017) Adaptive genetic algorithm based multi-objective optimization for photovoltaic cell design parameter extraction. Energy Proc 117:432–441

    Google Scholar 

  • Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:112443

    Google Scholar 

  • Liang J, Ge S, Qu B et al (2020) Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Convers Manag 203:112138

    Google Scholar 

  • Liao Z, Chen Z, Li S (2020) Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access 8:69937–69952

    Google Scholar 

  • Long W, Cai S, Jiao J et al (2020) A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers Manag 203:112243

    Google Scholar 

  • Louzazni M, Khouya A, Amechnoue K, Craciunescu A (2017) Parameter estimation of photovoltaic module using bio-inspired firefly algorithm. In: Proceedings of 2016 international renewable and sustainable energy conference, IRSEC 2016, pp 591–596

  • Ma J (2014) Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems, Thesis, University of Liverpool Repository, pp. 26–104. https://livrepository.liverpool.ac.uk/2006662/. Accessed 20 July 2020

  • Manoharan P, Subramaniam U, Babu TS et al (2021) Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Syst J 15:3024–3035

    Google Scholar 

  • Mohamed N, Alrahim A, Yahaya NZ, Singh B (2013) Single-diode model and two-diode model of PV modules: a comparison. In: 2013 IEEE international conference on control system, computing and engineering, pp 210–214

  • Montoya OD, Gil-González W, Grisales-Noreña LF (2020) Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet information. J Phys Conf Ser 1671:012008. https://doi.org/10.1088/1742-6596/1671/1/012008

    Article  Google Scholar 

  • Mosavi MR, Khishe M (2017) Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification. J Circuits Syst Comput 26:1750185

    Google Scholar 

  • Mosavi MR, Khishe M, Akbarisani M (2017) Neural network trained by biogeography-based optimizer with chaos for sonar data set classification. Wirel Pers Commun 95:4623–4642

    Google Scholar 

  • Mosavi MR, Khishe M, Naseri MJ et al (2019) Multi-layer perceptron neural network utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset. Arch Acoust 44:137–151

    Google Scholar 

  • Navabi R, Abedi S, Hosseinian SH, Pal R (2015) On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies. Energy Convers Manag 89:497–506

    Google Scholar 

  • Oliva D, Abd El Aziz M, Ella Hassanien A (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Google Scholar 

  • Premkumar M, Babu TS, Umashankar S, Sowmya R (2020a) A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik 208:164559

    Google Scholar 

  • Premkumar M, Sowmya R, Mosaad MI, Abdul Fattah TA (2020b) Design and development of low-cost photovoltaic module characterization educational demonstration tool. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.135

    Article  Google Scholar 

  • Premkumar M, Sowmya R, Umashankar S, Jangir P (2020c) Extraction of uncertain parameters of single-diode photovoltaic module using hybrid particle swarm optimization and grey wolf optimization algorithm. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.784

    Article  Google Scholar 

  • Premkumar M, Sowmya R, Umashankar S, Pradeep J (2020d) An effective solar photovoltaic module parameter estimation technique for single-diode model. IOP Conf Ser Mater Sci Eng 937:012014

    Google Scholar 

  • Premkumar M, Jangir P, Ramakrishnan C et al (2021a) Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access 9:62347–62379

    Google Scholar 

  • Premkumar M, Jangir P, Sowmya R et al (2021b) Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Trans 116:139–166

    Google Scholar 

  • Premkumar M, Kumar C, Sowmya R, Pradeep J (2021c) A novel salp swarm assisted hybrid maximum power point tracking algorithm for the solar photovoltaic power generation systems. Automatika 62:1–15

    Google Scholar 

  • Qiao W, Khishe M, Ravakhah S (2021) Underwater targets classification using local wavelet acoustic pattern and multi-layer perceptron neural network optimized by modified whale optimization algorithm. Ocean Eng 219:108415

    Google Scholar 

  • Rajasekar N, Krishna Kumar N, Venugopalan R (2013) Bacterial foraging algorithm based solar PV parameter estimation. Sol Energy 97:255–265

    Google Scholar 

  • Sheng H, Li C, Wang H et al (2019) Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 12:3527

    Google Scholar 

  • Soliman MA, Hasanien HM (2020) Marine predators algorithm for parameters identification of triple-diode photovoltaic models. IEEE Access 8:155832

    Google Scholar 

  • Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings - international conference on computational intelligence for modelling, control and automation, CIMCA 2005 and international conference on intelligent agents, web technologies and internet, vol 1, pp 695–701

  • Venkata Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34

    Google Scholar 

  • Verma OP, Aggarwal D, Patodi T (2016) Opposition and dimensional based modified firefly algorithm. Expert Syst Appl 44:168–176

    Google Scholar 

  • Wolf P, Benda V (2013) Identification of PV solar cells and modules parameters by combining statistical and analytical methods. Sol Energy 93:151–157

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Google Scholar 

  • Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 2019 7th International conference on smart computing and communications, ICSCC 2019, pp 1–5

  • Xiong G, Zhang J, Shi D, He Y (2018a) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174:388–405

    Google Scholar 

  • Xiong G, Zhang J, Yuan X et al (2018b) Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol Energy 176:742–761

    Google Scholar 

  • Yang X-S, Deb S (2010) Cuckoo search via levy flights. In: World congress on nature & biologically inspired computing (NaBIC), IEEE, Coimbatore, India, pp 210–214

  • Yu K, Chen X, Wang X, Wang Z (2017a) Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers Manag 145:233–246

    Google Scholar 

  • Yu K, Liang JJ, Qu BY et al (2017b) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag 150:742–753

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Premkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Appendices

Appendix A

See Tables 13, 14, 15 and 16IAEP denotes the integral absolute error with respect to the estimated power (Pest) and experimental power (Pexp) values.

Table 13 IAE and RE of OBGOA on SDM of the RTC France Si PV cell
Table 14 IAE and RE of OBGOA on DDM of the RTC France Si PV cell
Table 15 IAE and RE of OBGOA on SDM of the PhotoWatt-PWP201 PV module
Table 16 IAE and RE of OBGOA on DDM of the PhotoWatt-PWP201 PV module

Appendix B: control parameters of various algorithms

S. No.

Algorithm

Control parameters

Value

1

SSA

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

b

1

2

COA

Number of search agents (Np)

10 packs with 30 coyotes for all problems

Maximum number of iterations (ITmax)

1000

3

SMA

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

V b

− 1 to 1

4

EO

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

a1, a2, and RP

2, 1, and 0.5, respectively

5

HHO

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

β, F, and Q

1.5, 6, and 5, respectively

6

MPA

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

FADs, mutation probability, and p

0.5

7

GOA

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

P r

0.5

8

OBGOA

Number of search agents (Np)

30 (SDM), 50 (DDM and others)

Maximum number of iterations (ITmax)

1000

P r

0.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premkumar, M., Jangir, P., Elavarasan, R.M. et al. Opposition decided gradient-based optimizer with balance analysis and diversity maintenance for parameter identification of solar photovoltaic models. J Ambient Intell Human Comput 14, 7109–7131 (2023). https://doi.org/10.1007/s12652-021-03564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03564-4

Keywords

Navigation