Skip to main content
Log in

Identification and Quantification of Bioactive Compounds in Agave potatorum Zucc. Leaves at Different Stages of Development and a Preliminary Biological Assay

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The leaves of Agave potatorum Zucc. represent more than 50% of waste during the jima in the mezcal industry. To provide the basis for a knowledge-based integral use of these wastes, this research provides the identification and quantification of bioactive compounds of leaves at different stages of development, differentiated by the position of the leaves in the plant (basal, medium and apical), and dividing each leaf into apical and basal parts. Qualitative phytochemical analysis showed highly positive results for coumarins and tannins, and positive for cardiac glycosides and triterpenoids compounds, without an age-dependent or position of the leaves response of the plant. Quantitative analysis of phenolic compounds and flavonoids is not preferentially accumulated respect to the position of the leaf in the plant, only are higher in the apical parts, whereas for carbohydrates a positive gradient was evidenced through the leaves in the plant from apical to basal ones. The highest concentration of phenolics, flavonoids, fructose and fructans compounds were determined in 6-year leaves, with maximum observed values  of 173.80 ± 9.36, 35.58 ± 6.41, 308.30 ± 3.62 mg/g d.w., and 37.23 ± 4.5%, respectively. Interestingly, the ethanolic extract of the fresh leaves of A. potatorum showed an increase in the mycelial growth of Botrytis cinerea. The data showed that plant age is the most important factor influencing the content of bioactive compounds. In addition, a fungal growth enhancing effect was exhibited by the extract, suggesting a biotechnological advantage that can improve the growth of beneficial fungi in agricultural crops.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eguiarte, L.E., Silva, A., Souza.: Biología evolutiva de la familia Agavaceae: biología reproductiva, genética de poblaciones y filogenia. Bol. Soc. Bot. Mex. 166, 131–150 (2000). Núm.: 000194020, ISSN 0185–3619

  2. Van den Ende, W.: Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 4, 1–11 (2013). https://doi.org/10.3389/fpls.2013.00247

    Article  Google Scholar 

  3. Versluys, M., Kirtel, O., Toksoy Oner, E., Van den Ende, W.: The fructan syndrome: evolutionary aspects and common themes among plants and microbes. Plant Cell Environ. 41, 16–38 (2018). https://doi.org/10.1111/pce.13070

    Article  Google Scholar 

  4. Vera, G.A.M., Santiago, G.P.A., López, M.G.: Compuestos volátiles aromáticos generados durante la elaboración de mezcal de Agave angustifolia y Agave potatorum. Rev. Fitotecn. Mex. 32, 273–279 (2009)

    Article  Google Scholar 

  5. Mancilla-Margalli, N.A., López, M.G.: Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem. 54, 7832–7839 (2006). https://doi.org/10.1021/jf060354v

    Article  Google Scholar 

  6. López-Romero, J.C., Ayala‐Zavala, J.F., González‐Aguilar, G.A., Peña‐Ramos, E.A., González‐Ríos, H.: Biological activities of Agave by‐products and their possible applications in food and pharmaceuticals. J. Sci. Food Agric. 55, 4413–4423 (2018). https://doi.org/10.1007/s13197-018-3351-3

    Article  Google Scholar 

  7. Karabourniotis, G., Fasseas, C.: The dense indumentum with its polyphenol content may replace the protective role of the epidermis in some young xeromorphic leaves. Can. J. Bot. 74, 347–343 (1996)

    Article  Google Scholar 

  8. Cerovic, Z.G., Ounis, A., Cartelat, A., Latouche, G., Goulas, Y., Meyer, S., Moya, I.: The use of chlorophyII fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 25, 1663–1676 (2002). https://doi.org/10.1046/j.1365-3040.2002

    Article  Google Scholar 

  9. Das, D.K.: Naturally occurring flavonoids: structure, chemistry, and high-performance liquid chromatography methods for separation and characterization. Methods Enzymol. 234, 410–420 (1994). https://doi.org/10.1016/0076-6879(94)34111-7

    Article  Google Scholar 

  10. Hertog, M.G.L., Hollman, P.C.H., van de Putte, B.: Content of potentially anticarcinogenic flavonoids of tea, infusions, wines, and fruit juices. J. Agric. Food Chem. 41, 1242–1246 (1996). https://doi.org/10.1021/jf00032a015

    Article  Google Scholar 

  11. Formica, J.V., Regelson, W.: Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33, 1061–1080 (1995). https://doi.org/10.1016/0278-6915(95)00077-1

    Article  Google Scholar 

  12. Blunden, G., Yi, Y., Jewers, K.: Steroidal sapogenins from leaves of Agave species. Phytochemistry 17, 1923–1925 (1978). https://doi.org/10.1016/S0031-9422(00)88734-8

    Article  Google Scholar 

  13. Nava-Cruz, N.Y., Medina-Morales, M.A., Martinez, J.L., Rodriguez, R., Aguilar, C.N.: Agave biotechnology: an overview. Crit. Rev. Biotechnol. 35, 546–559 (2015). https://doi.org/10.3109/07388551.2014.923813

    Article  Google Scholar 

  14. Schmid, R., Gentry, H.S.: Agaves of Continental North America. Taxon 47, 780–781 (1998)

    Article  Google Scholar 

  15. Ahumada-Santos, Y.P., Montes-Avila, J., Uribe-Beltrán, M., de Díaz-Camacho, J., López-Angulo, S.P., Vega-Aviña, G., Delgado-Vargas, R.: Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Ind. Crop. Prod. 49, 143–149 (2013). https://doi.org/10.1016/j.indcrop.2013.04.050

    Article  Google Scholar 

  16. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A.: Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 42, 1–23 (2017). https://doi.org/10.3390/plants6040042

    Article  Google Scholar 

  17. García-Mendoza, A.J.: Revisión taxonómica del complejo Agave potatorum Zucc. (Agavaceae): nuevos taxa y neotipificación. Acta Bot. Mex. 91, 71–93 (2010)

    Article  Google Scholar 

  18. Harborne, J.B.: Phytochemical Methods, 3rd edn., pp. 49–188. Chapman and Hall Ltd., London (1998)

    Google Scholar 

  19. Domínguez, X.A.: Métodos de investigación fitoquímica (No. 581.19 D6) (1973)

  20. Santos-Zea, L., Gutierrez-Uribe, J.A., Benedito, J.: Effect of solvent composition on ultrasound-generated intensity and its influence on the ultrasonically assisted extraction of bioactives from Agave bagasse (Agave salmiana). Food Eng. Rev. (2020). https://doi.org/10.1007/s12393-020-09260-x

    Article  Google Scholar 

  21. Bhat, S., Nagasampagi, B., Sivakumar, M.: Chemistry of Natural Products. Springer, Berlin. https://books.google.com.mx/books?id=C3la6a_gnKUC&prin(2005).tsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  22. AOAC: Official Methods of Analysis, 20th edn. Association of Official Analytical Chemists, Washington, DC (2000)

    Google Scholar 

  23. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1038/168167a0

    Article  Google Scholar 

  24. Somani, B.L., Khanade, J., Sinha, R.A.: A modified anthrone–sulfuric acid method for determination of fructose in the presence of certain proteins. Anal. Biochem. 167, 327–330 (1987). https://doi.org/10.1016/0003-2697(87)90172-2

    Article  Google Scholar 

  25. Mellado-Mojica, E., López, M.G.: Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. J. Agric. Food Chem. 60, 11704–11713 (2012). https://doi.org/10.1021/jf303332n

    Article  Google Scholar 

  26. Kanaya, K.I., Chiba, E., Shimomura, T.: Thin-layer chromatography of linear oligosaccharides. Agric. Biol. Chem. Tokyo 42, 1947–1948 (1978)

    Google Scholar 

  27. Anderson, K., Li, S.C., Li, Y.T.: Diphenylamine–aniline–phosphoric acid reagent, a versatile spray reagent for revealing glycoconjugates on thin layer chromatography plates. Anal. Biochem. 287, 337–339 (2000). https://doi.org/10.1006/abio.2000.4829

    Article  Google Scholar 

  28. Hammuel, C., Yebpella, G.G., Shallangwa, G., A., Magomya, A., M., Agbaji, A.S.: Phytochemical and antimicrobial screening of methanol and aqueous extracts of Agave sisalana. Acta Pol. Pharm. Drug Res. 68, 535–539 (2011)

    Google Scholar 

  29. Garcia, M.D., Saenz, M.T., Puerta, R., Quilez, A., Fernández, M.A.: Antibacterial activity of Agave intermixta and Cissus sicyoides. Fitoterapia 70, 71–73 (1999). https://doi.org/10.1016/S0367-326X(98)00009-4

    Article  Google Scholar 

  30. Jiménez-Muñóz, E., Prieto-García, F., Prieto-Méndez, J., Acevedo-Sandoval, O.A., Rodríguez-Laguna, R.: Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. DYNA 83, 232–242 (2016). https://doi.org/10.15446/dyna.v83n197.52243

    Article  Google Scholar 

  31. Reyes-Munguía, A., Azúara-Nieto, E., Beristain, C.I., Cruz-Sosa, F., Vernon-Carter, E.J.: Purple maguey (Rhoeo discolor) antioxidant properties. CYTA J. Food 7, 209–216 (2009). https://doi.org/10.1080/19476330903010177

    Article  Google Scholar 

  32. Gutiérrez, M.: Nutrición mineral de las plantas: avances y aplicaciones. Agron. Costarric. 21, 127–137 (1997)

    Google Scholar 

  33. Hamissa, A.M., Seffen, M., Aliakbarian, B., Casazza, A.A., Perego, P., Converti, A.: Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor. Food Bioprod. Process. 90, 17–21 (2012). https://doi.org/10.1016/j.fbp.2010.11.008

    Article  Google Scholar 

  34. Saldaña-Oyarzábal, I., Ritsema, T., Pearce, S.R.: Analysis and characterization of fructan oligosaccharides and enzymatic activities in the leaves of Agave tequilana (Weber) var Azul. Dyn. Biochem. Biotechnol. Mol. Biol. 3, 52–58 (2009)

    Google Scholar 

  35. Valluru, R., Van Den Ende, W.: Plant fructans in stress environments: emerging concepts and future prospects. J. Exp. Bot. 59, 2905–2916 (2008). https://doi.org/10.1093/jxb/ern164

    Article  Google Scholar 

  36. Wang, N., Nobel, P.S.: Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol. 116, 709–714 (1998). https://doi.org/10.1104/pp116.2.709

    Article  Google Scholar 

  37. Li, H.J., Yang, A.F., Zhang, X.C., Gao, F., Zhang, J.R.: Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue Organ Cult. 89, 37–48 (2007). https://doi.org/10.1007/s11240-007-9213-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Instituto Politécnico Nacional (SIP Key 20180444, 20195514 and 20200758). We are grateful to Dra. Mercedes López and Erika Mellado-Mojica for the facilities granted to carry out the determination e identification of fructans from A. potatorum, and Dr. Alfonso Vásquez López at IPN CIIDIR Oaxaca for the donation of B. cinerea. To Valeria Melisa García at UNAM, and Eduardo Carrasco López at ITVO for their support in data acquisition. To Ma. del Sagrario Velasco García Professor at Instituto Politécnico Nacional for the grammar and spelling reviewing of this paper. To mezcal producers from Infiernillo Zaachila, Oaxaca for the plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Araceli Santiago-García.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest that could affect the performance of the work or the interpretation of the data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto-Castro, D., Pérez-Herrera, A., García-Sánchez, E. et al. Identification and Quantification of Bioactive Compounds in Agave potatorum Zucc. Leaves at Different Stages of Development and a Preliminary Biological Assay. Waste Biomass Valor 12, 4537–4547 (2021). https://doi.org/10.1007/s12649-020-01329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01329-2

Keywords

Navigation