Skip to main content
Log in

Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethyl ammonium bromide

DP:

Degree polymers

1-FFT:

Fructan: fructan 1-fructosyltransferase

MDA:

Malondialdehyde

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

1-SST:

Sucrose: sucrose 1-fructosyltransferase

TLC:

Thin layer chromatography

WSC:

Water soluble carbohydrate

References

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54:549–567

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Johnson X, Lidgett A, Spangenberg G (2003) Isolation and characterization of a sucrose: sucrose 1-fructoseyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 160:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • de Halleux S, van Cutsem P (1997) Cloning and sequencing of the 1-SST cDNA from chicory root (Accession No. U81520). Plant Physiol 113:1003

    Article  Google Scholar 

  • de Roover J, Vandenbranden K, van Laere A, van den Ende W (2000) Drought induces fructan synthesis and 1-SST (sucrose: sucrose 1-fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta 210:808–814

    Article  PubMed  Google Scholar 

  • Ebskamp MJM, van der Meer IM, Spronk BA, Weisbeek PJ, Smeekens SJM (1994) Accumulation of fructose polymers in transgenic tobacco. Biotechnol 12:272–275

    Article  CAS  Google Scholar 

  • Guy CL (2003) Freezing tolerance of plants: current understanding and selected emerging concepts. Can J Bot 81:1216–1223

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hellwege EM, Gritscher D, Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose: sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans—a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Hincha DK, Hellwege EM, Heyer AG, Crowe JH (2000) Plant fructans stabilize phosphatidycholine liposomes during freeze-drying. Eur J Biochem 267:535–540

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Kawakami A, Yoshida M (2002) Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotechnol Biochem 66:2297–2305

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Livingstone DP, Henson CA (1998) Apoplastic sugars, fructans, fructans exohydrolase, and invertase in winter oat, responses to second-phase cold harding. Plant Physiol 116:403–408

    Article  Google Scholar 

  • Lüscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, Boller T, Wiemken A (2000) Cloning and functional analysis of sucrose: sucrose 1-fructosyltransferase from tall fescue. Plant Physiol 124:1217–1227

    Article  PubMed  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004a) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  CAS  Google Scholar 

  • Parvanova D, Popova A, Zaharieva I, Lambrev P, Konstantinova T, Taneva S, Atanassov A, Goltsev V, Djilianov D (2004b) Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica 42:179–185

    CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    Article  CAS  Google Scholar 

  • Puebla AF, Battaglia ME, Salerno GL, Pontis HG (1999) Sucrose-sucrose fructosyltransferase activity: a direct and rapid colorimetric procedure for the assay of plant extracts. Plant Physiol Biochem 37:699–702

    Article  CAS  Google Scholar 

  • Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149

    Article  CAS  Google Scholar 

  • Ritsema T, Smeekens SCM (2003) Engineering fructan metabolism in plants. J Plant Physiol 160:811–820

    Article  PubMed  CAS  Google Scholar 

  • Röber M, Geider K, Müller-Röber B, Willmitzer L (1996) Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates. Planta 199:528–536

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp. 27–99, 518–552

  • Thorsteinsson B, Harrison PA, Chatterton NJ (2002) Fructan and total carbohydrate accumulation in leaves of two cultivars of timothy (Phleum pratense Vega and Climax) as affected by temperature. J Plant Physiol 159:999–1003

    Article  CAS  Google Scholar 

  • van den Ende W, van Wonterghem D, Verhaert P, Dewil E, De Loof A, van Laere A (1996) Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus L.). Physiol Plant 98:455–466

    Article  Google Scholar 

  • van den Ende W, Michiels A, van Wonterghem D, Vergauwen R, van Laere A (2000) Cloning, developmental, and tissue-specific expression of sucrose: sucrose 1-fructosyltransferase from Taraxacum officinale. Fructan localization in roots. Plant Physiol 123:71–79

    Google Scholar 

  • van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A (2005) Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum L.). New Phytol 166:917–932

    Article  PubMed  Google Scholar 

  • van der Meer IM, Koops AJ, Hakkert JC, van Tunen AJ (1998) Cloning of the fructan biosynthesis pathway of Jerusalen artichoke. Plant J 15:489–500

    Article  PubMed  Google Scholar 

  • van Laere A, van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  PubMed  CAS  Google Scholar 

  • Warren GJ (1998) Cold stress: manipulating freezing tolerance in plants. Curr Biol 8:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Zhai SM, Sui ZH, Yang AF, Zhang JR (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 27:799–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10A107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Ren Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HJ., Yang, AF., Zhang, XC. et al. Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa . Plant Cell Tiss Organ Cult 89, 37–48 (2007). https://doi.org/10.1007/s11240-007-9213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9213-8

Keywords

Navigation