Skip to main content

Advertisement

Log in

Succinate Production with Metabolically Engineered Escherichia coli Using Elephant Grass Stalk (Pennisetum purpureum) Hydrolysate as Carbon Source

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Succinic acid is a spectacular chemical that can be used as the precursor of various industrial products including pharmaceuticals and biochemicals. The improvement of the succinic acid market depends on strains engineering that is capable of producing succinic acid at high yield and excellent growth rate which could utilize the wide range of carbon sources such as renewable biomass. Here we use counter selection using catAsacB for pathway design and strains developments. In this investigation, metabolically engineered Escherichia coli M6PM strain was constructed for the synthesis of succinic acid using elephant grass stalk (Pennisetum purpureum) as a carbon source. Elephant grass stalk hydrolysate was prepared which comprised of 11.60 ± 0.04 g/L glucose, 27.22 ± 0.04 g/L xylose and 0.65 ± 0.04 g/L arabinose. Metabolically engineered E. coli M6PM was constructed and fermentation with pure sugars revealed that it could utilize xylose and glucose efficiently. E. coli M6PM produced a final succinate concentration of 30.03 ± 0.02 g/L and a yield of 1.09 mol/mol during 72 h dual-phase fermentation using elephant grass stalk hydrolysate, which resulted in 64% maximum theoretical yield of succinic acid. The high succinate yield from elephant grass stalk demonstrated possible application of renewable biomass as feedstock for the synthesis of succinic acid using recombinant E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

O.D:

Optical density

rpm:

Revolution per minutes

IPTG:

l isopropyl-β-d-thiogalactopyranoside

ldhA:

Lactate dehydrogenase A

pta-ackA:

Phosphotranacetylase acetate kinase A

pflB:

Pyruvate formate lyase B

poxB:

Pyruvate oxidase B

pgi :

Phosphoglucose isomerase

mreC:

Murein cluster C

pyc :

Pyruvate carboxylase

ppc :

Phosphoenol pyruvate carboxylase

zwf :

Glucose 6-phosphate dehydrogenase

pgl :

6-Phosphogluconolactonase

gnd :

6-Phosphogluconate dehydrogenase

tkt :

Transketolase

tal :

Transaldolase

References

  1. Song, H., Lee, S.Y.: Production of succinic acid by bacterial fermentation. Enzym. Microb. Technol. 39, 352–361 (2006)

    Article  Google Scholar 

  2. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S.: Top Value Added Chemicals from Biomass. Volume 1-Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Department of Energy, Washington DC, (2004)

    Google Scholar 

  3. Willke, T., Vorlop, K.D.: Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66, 131–142 (2004)

    Article  Google Scholar 

  4. Menegol, D., Scholl, A.L., Fontana, R.C., Dillon, A.J.P., Camassola, M.: Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers. Manag. 88, 1252–1256 (2014)

    Article  Google Scholar 

  5. Xie, X.-M., Zhang, X.-Q., Dong, Z.-X., Guo, H.-R.: Dynamic changes of lignin contents of MT-1 elephant grass and its closely related cultivars. Biomass Bioenergy 35, 1732–1738 (2011)

    Article  Google Scholar 

  6. Zhu, X.-G., Long, S.P., Ort, D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr. Opin. Biotechnol. 19, 153–159 (2008)

    Article  Google Scholar 

  7. Lee, P.C., Lee, S.Y., Chang, H.N.: Succinic acid production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J. Microbiol. Biotechnol. 18, 1792–1796 (2008)

    Google Scholar 

  8. Samuelov, N., Lamed, R., Lowe, S., Zeikus, J.: Influence of CO2–HCO3—levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57, 3013–3019 (1991)

    Article  Google Scholar 

  9. Olajuyin, A.M., Yang, M., Liu, Y., Mu, T., Tian, J., Adaramoye, O.A., Xing, J.: Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 214, 653–659 (2016)

    Article  Google Scholar 

  10. Jantama, K., Zhang, X., Moore, J., Shanmugam, K., Svoronos, S., Ingram, L.: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881–893 (2008)

    Article  Google Scholar 

  11. Lin, H., Bennett, G.N., San, K.-Y.: Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7, 116–127 (2005)

    Article  Google Scholar 

  12. Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., Xing, J.: Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process. Biochem. 46, 365–371 (2011)

    Article  Google Scholar 

  13. Sánchez, A.M., Bennett, G.N., San, K.-Y.: Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229–239 (2005)

    Article  Google Scholar 

  14. Clark, D.P.: The fermentation pathways of Escherichia coli. FEMS Microbiol. Lett. 63, 223–234 (1989)

    Article  Google Scholar 

  15. Bai, B., Zhou, J.M., Yang, M.H., Liu, Y.L., Xu, X.H., Xing, J.M.: Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 185, 56–61 (2015)

    Article  Google Scholar 

  16. Lin, H., Bennett, G.N., San, K.-Y.: Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 32, 87–93 (2005)

    Article  Google Scholar 

  17. Noltmann, E.A.: Aldose-ketose isomerases. In: The Enzymes, pp. 271–354. Elsevier, Amsterdam (1972)

    Google Scholar 

  18. Hansen, T., Oehlmann, M., Schönheit, P.: Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183, 3428–3435 (2001)

    Article  Google Scholar 

  19. Schönheit, P., Schäfer, T.: Metabolism of hyperthermophiles. World J. Microb. Biotechnol. 11, 26–57 (1995)

    Article  Google Scholar 

  20. Selig, M., Xavier, K.B., Santos, H., Schönhei, P.: Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 167, 217–232 (1997)

    Article  Google Scholar 

  21. Hansen, T., Schönheit, P.: Escherichia coli phosphoglucose isomerase can be substituted by members of the PGI family, the PGI/PMI family, and the cPGI family. FEMS Microbiol. Lett. 250, 49–53 (2005)

    Article  Google Scholar 

  22. Müller-Hartmann, H., Müller-Hill, B.: The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium. J. Mol. Biol. 257, 473–478 (1996)

    Article  Google Scholar 

  23. Okada, T., Ueyama, K., Niiya, S., Kanazawa, H., Futai, M., Tsuchiya, T.: Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J. Bacteriol. 146, 1030–1037 (1981)

    Article  Google Scholar 

  24. Narang, A., Pilyugin, S.S.: Bacterial gene regulation in diauxic and non-diauxic growth. J. Theor. Biol. 244, 326–348 (2007)

    Article  MathSciNet  Google Scholar 

  25. Hermsen, R., Okano, H., You, C., Werner, N., Hwa, T.: A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 11, 801 (2015)

    Article  Google Scholar 

  26. Vemuri, G.N., Eiteman, M.A., Altman, E.: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68, 1715–1727 (2002)

    Article  Google Scholar 

  27. Cheng, K.K., Zhao, X.B., Zeng, J., Zhang, J.A.: Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod. Biorefin. 6, 302–318 (2012)

    Article  Google Scholar 

  28. Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X.: Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 24, 87–96 (2014)

    Article  Google Scholar 

  29. Zhao, Y., Cao, W., Wang, Z., Zhang, B., Chen, K., Ouyang, P.: Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells. Bioresour. Technol. 202, 152–157 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (863 Project, No 2014AA021905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Xing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olajuyin, A.M., Yang, M., Mu, T. et al. Succinate Production with Metabolically Engineered Escherichia coli Using Elephant Grass Stalk (Pennisetum purpureum) Hydrolysate as Carbon Source. Waste Biomass Valor 11, 1717–1725 (2020). https://doi.org/10.1007/s12649-018-0524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0524-2

Keywords

Navigation