Skip to main content
Log in

Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

It is of great economic interest to produce succinate from low-grade carbon sources, e.g., lignocellulosic biomass hydrolysate, which mainly contains glucose and xylose. Inactivation of the glucose uptake system PtsG was evaluated for succinate production from xylose-rich feedstocks. Strains with integration of succinate production modules into the chromosome of Escherichia coli were then constructed. These strains have better succinate production performance from xylose-rich feedstocks than strain FZ560 harboring pHL413KF1. Glucose utilization was enhanced in FZ661T by manipulation of the gal operon to allow efficient use of the high-concentration glucose in woody biomass hydrolysate. Up to 906.7 mM (107.0 g/L) succinate was produced from mixed sugars in fed-batch fermentation and more than 461.7 mM (54.5 g/L) succinate was produced from woody hydrolysate in a batch fermentation. In this study, FZ661T was able to produce succinate from woody hydrolysate in minimal medium efficiently, making it attractive for industrial applications in succinate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn JH, Jang Y-S, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  Google Scholar 

  2. Ahn JH, Jang Y-S, Yup Lee S (2017) Succinic acid. In: Wittmann C, Liao JC (eds) Industrial biotechnology: products and processes, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 505–544. https://doi.org/10.1002/9783527807833.ch17

    Chapter  Google Scholar 

  3. Balzer GJ, Thakker C, Bennett GN, San K-Y (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD + -dependent formate dehydrogenase. Metab Eng 20:1–8

    Article  CAS  Google Scholar 

  4. Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12:409–419

    Article  CAS  Google Scholar 

  5. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  6. Bradfield MF, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 8:181

    Article  CAS  Google Scholar 

  7. Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413

    Article  CAS  Google Scholar 

  8. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  9. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  CAS  Google Scholar 

  10. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Factories 4:14

    Article  CAS  Google Scholar 

  11. Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694

    Article  CAS  Google Scholar 

  12. Huang B, Yang H, Fang G, Zhang X, Wu H, Li Z, Ye Q (2018) Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnol Bioeng 115:943–954

    Article  CAS  Google Scholar 

  13. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Lab (NREL), Golden

    Google Scholar 

  14. Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717

    Article  CAS  Google Scholar 

  15. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  CAS  Google Scholar 

  16. Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460

    Article  CAS  Google Scholar 

  17. Lee P, Lee S, Hong S, Chang H, Park S (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114

    Article  CAS  Google Scholar 

  18. Li Q, Huang B, He Q, Lu J, Li X, Li Z, Wu H, Ye Q (2018) Production of succinate from simply purified crude glycerol by engineered Escherichia coli using two-stage fermentation. Bioresour Bioprocess 5:41

    Article  Google Scholar 

  19. Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5:1299–1307

    Article  CAS  Google Scholar 

  20. Loman AA, Ju L-K (2017) Enzyme-based processing of soybean carbohydrate: recent developments and future prospects. Enzyme Microb Technol 106:35–47

    Article  CAS  Google Scholar 

  21. Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93:2455–2462

    Article  CAS  Google Scholar 

  22. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404. https://doi.org/10.1007/s10529-006-9252-y

    Article  PubMed  CAS  Google Scholar 

  23. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  Google Scholar 

  24. Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, Wang X (2017) Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci 114:7349–7354. https://doi.org/10.1073/pnas.1700345114

    Article  PubMed  CAS  Google Scholar 

  25. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361

    Article  CAS  Google Scholar 

  26. St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE (2013) One-step cloning and chromosomal integration of DNA. ACS Synth Biol 2:537–541

    Article  CAS  Google Scholar 

  27. Steinsiek S, Bettenbrock K (2012) Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J Bacteriol 194:5897–5908

    Article  CAS  Google Scholar 

  28. Thakker C, Martínez I, San KY, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7:213–224

    Article  CAS  Google Scholar 

  29. Thakker C, San K-Y, Bennett GN (2013) Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresour Technol 130:398–405

    Article  CAS  Google Scholar 

  30. Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760

    Article  CAS  Google Scholar 

  31. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass: volume-I—Results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab, Golden

    Google Scholar 

  32. Wu H, Lee J, Karanjikar M, San K-Y (2014) Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 169:119–125

    Article  CAS  Google Scholar 

  33. Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T (2015) Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem 50:341–346

    Article  CAS  Google Scholar 

  34. Zhu F, Wang Y, San KY, Bennett GN (2018) Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 115:1743–1754

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by United Soybean Board Award #1840-352-0707-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Wang, C., San, KY. et al. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions. J Ind Microbiol Biotechnol 47, 223–232 (2020). https://doi.org/10.1007/s10295-020-02259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02259-7

Keywords

Navigation