Skip to main content

Advertisement

Log in

Syngas Characterization and Electric Performance Evaluation of Gasification Process Using Forest Plantation Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Forest plantations biomass is an interesting energy source for power generation with downdraft gasifier of less than 1 MW in Costa Rica. Thus, this work aims at evaluating the performance and efficiency of the electrical and thermal energy generation system in a downdraft gasifier with five woody biomass (Acacia mangium, Cupressus lusitanica, Gmelina arborea, Tectona grandis and Eucalyptus saligna). The biomass flow (10.9–13.5 kg/h) produced 18.1–22.5 kg/h of syngas flows. The ash production was 0.26–0.41 kg/h, and the biochar flow was 3.9–4.6 kg/h. The LHV of the syngas obtained was 5.77–6.77 MJ/Nm3, and the dry and tar free syngas composition was: 22.86–26.77% for CO, 4.08–5.74% for CH4, 14.56–17.61% for H2 and 10.19–13.49% for CO2. On the other hand, the electrical parameters showed a suitable performance for power generation, with 21.66–22.45 MJ/h, and an energy efficiency of 11.68- 14.25%. The motor energy efficiency was 18.02–20.88%, showing an electrical yield between 456 and 555 kWh/t. The cold gas efficiency obtained was 58.51–80.60%. The chemical properties seem to correlate the most with the production and characteristics of syngas, charcoal or ash during gasification. Finally, 5 species presented different properties, but the production and efficiency of the gasifier was little affected by these differences, but Eucalyptus saligna was less efficient parameters for thermal energy and electricity generation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used during the current work are available from the corresponding author request.

Abbreviations

BC:

Bark content

C:

Carbon content

CC:

Cellulose content

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CH4 :

Methane

Dchips :

Chip density

EMC:

Equilibrium moisture content

H2 :

Hydrogen

H2O:

Water

LC:

Lignin content

LHV:

Low heating value (LHV) and volatile content (VC)

MC:

Moisture content

MC-G:

Moisture content at feedstock gasification

MC-OD:

Moisture content at oven-dried condition

N2 :

Nitrogen

O2 :

Oxygen

S:

Sulfur content

TOC:

Total organic carbon

VC:

Volatile content

References

  1. Roberts, D., Johansson, E.M., Hoffman, I., Becidan, B., Ciceri, M., Murphy, G., Trois, F., Durran, T.P.:Material and Energy valorisation of waste in a circular economy. IEA Bioenergy. Task report 36. (2022) https://www.ieabioenergy.com/wp-content/uploads/2022/05/T36_Waste_Circuar_Economy_final_report.pdf. Acessed 12 Dec 2022

  2. Jordaan, S.M., Combs, C., Guenther, E.: Life cycle assessment of electricity generation: A systematic review of spatiotemporal methods. Adv. Appl. Energy 3, 100058 (2021). https://doi.org/10.1016/j.adapen.2021.100058

    Article  Google Scholar 

  3. Onour, I.A., Abdo, M.M.: Sensitivity of crude oil price change to major global factors and to Russian-Ukraine war crisis. J. Sustain. Bus Econ. 5(2), 4641 (2022). https://doi.org/10.30564/jsbe.v5i2.4641

    Article  Google Scholar 

  4. Hernández-Chaverri, R.A., Buenrostro-Figueroa, J.J.: Biomass: biorefinery as a model to boost the bioeconomy in Costa Rica, a review. Agronomía Mesoamericana 32(3), 1047–1070 (2021). https://doi.org/10.15517/AM.V32I3.43736

    Article  Google Scholar 

  5. Popp, J., Kovács, S., Oláh, J., Divéki, Z., Balázs, E.: Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 60, 76–84 (2021). https://doi.org/10.1016/j.nbt.2020.10.004

    Article  Google Scholar 

  6. Alonso, D.M., Hakim, S.H., Zhou, S., Won, W., Hosseinaei, O., Tao, J., Garcia-Negron, V., Motagamwala, A.H., Mellmer, M.A., Huang, K., Houtman, C.J.: Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Sci. Adv. 3(5), e1603301 (2017). https://doi.org/10.1016/j.rser.2014.01.07910.1126/sciadv.16033

    Article  Google Scholar 

  7. Abuelnuor, A.A., Wahid, M.A., Hosseini, S.E., Saat, A., Saqr, K.M., Sait, H.H., Osman, M.: Characteristics of biomass in flameless combustion: a review. Renew. Sustain. Energy Rev. 33, 363–370 (2014). https://doi.org/10.1016/j.rser.2014.01.079

    Article  Google Scholar 

  8. Valverde, J.C., Arias, D., Campos, R., Jiménez, M.F., Brenes, L.: Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica. Energy, Ecol. Environ. 6(3), 232–243 (2021). https://doi.org/10.1007/s40974-020-00172-4

    Article  Google Scholar 

  9. Torres, C., Urvina, L., de Lasa, H.: A chemical equilibrium model for biomass gasification. Application to Costa Rican coffee pulp transformation unit. Biomass Bioenergy 123, 89–103 (2019). https://doi.org/10.1016/j.biombioe.2019.01.025

    Article  Google Scholar 

  10. Moya, R., Tenorio, C., Oporto, G.: Short rotation wood crops in Latin American: a review on status and potential uses as biofuel. Energies 12(4), 705 (2019). https://doi.org/10.3390/en12040705

    Article  Google Scholar 

  11. Tenorio, C., Moya, R., Tomazello-Filho, M., Valaert, J.: Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioRes 10(1), 482–498 (2015)

    Google Scholar 

  12. Balaguer-Benlliure, V., Moya, R., Gaitán-Alvarez, J.: Physical and energy characteristics, compression strength, and chemical modification of charcoal produced from sixteen tropical woods in Costa Rica. J. Sustain. For. (2023). https://doi.org/10.1080/10549811.2021.1978096

    Article  Google Scholar 

  13. Moya, R., Rodriguez-Zuñiga, A., Puente-Urbina, A., Gaitan-Alvarez, J.: Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analyses in five fast-growing plantation of Costa Rica. Energy 149, 1–10 (2018). https://doi.org/10.1016/j.energy.2018.02.049

    Article  Google Scholar 

  14. Sharma, P., Gupta, B., Pandey, M., Bisen, K.S., Baredar, P.: Downdraft biomass gasification: a review on concepts, designs analysis, modelling and recent advances. Mater. Today: Proc. 46, 5333–5341 (2021). https://doi.org/10.1016/j.matpr.2020.08.789

    Article  Google Scholar 

  15. Pérez, J.F., Melgar, A., Benjumea, P.N.: Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: an experimental study. Fuel 96, 487–496 (2012). https://doi.org/10.1016/j.fuel.2012.01.064

    Article  Google Scholar 

  16. De Lasa, H., Salaices, E., Mazumder, J., Lucky, R.: Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem. Rev. 111(9), 5404–5433 (2011). https://doi.org/10.1021/cr200024w

    Article  Google Scholar 

  17. Verma, S., Dregulo, A.M., Kumar, V., Bhargava, P.C., Khan, N., Singh, A., Sun, X., Sindhu, R., Binod, P., Shang, Z., Pandey, A., Awasthi, M.K.: Reaction engineering during biomass gasification and conversion to energy. Energy 266, 126458 (2023). https://doi.org/10.1016/j.energy.2022.126458

    Article  Google Scholar 

  18. Dhaundiyal, A., Chandra, T.: Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. Acta Technol. Agric. 19(1), 10–18 (2016). https://doi.org/10.1515/ata-2016-0003

    Article  Google Scholar 

  19. Evaristo, R.B.W., Viana, N.A., Guimarães, M.G., do Vale, A.T., de Macedo, J.L., Ghesti, G.F.: Evaluation of waste biomass gasification for local community development in central region of Brazil. Biomass Convers. Biorefin. 12, 2823–2834 (2020). https://doi.org/10.1007/s13399-020-00821-y

    Article  Google Scholar 

  20. Sansaniwal, S., Pal, K., Rosen, M., Tyagi, S.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363–384 (2017). https://doi.org/10.1016/J.RSER.2017.01.038

    Article  Google Scholar 

  21. Dahou, T., Defoort, F., Khiari, B., Labaki, M., Dupont, C., Jeguirim, M.: Role of inorganics on the biomass char gasification reactivity: a review involving reaction mechanisms and kinetics models. Renew. Sustain. Energy Rev. 135, 110136 (2021). https://doi.org/10.1016/j.rser.2020.110136

    Article  Google Scholar 

  22. Dejtrakulwong, C., Patumsawad, S.: Four zones modeling of the downdraft biomass gasification process: effects of moisture content and air to fuel ratio. Energy Procedia 52, 142–149 (2014). https://doi.org/10.1016/j.egypro.2014.07.064

    Article  Google Scholar 

  23. Susastriawan, A.P., Saptoadi, H.: Small-scale downdraft gasifiers for biomass gasification: a review. Renew. Sustain. Energy Rev. 76, 989–1003 (2017). https://doi.org/10.1016/j.rser.2017.03.112

    Article  Google Scholar 

  24. Pérez, S., Renedo, C., Ortiz, A., Ortiz, F.: Residual biomass in Eucalyptus globulus plantations according to stand quality. Biomass Bioenergy 141, 105699 (2022). https://doi.org/10.1016/j.biombioe.2020.105699

    Article  Google Scholar 

  25. Torres, C., Chaves, M., Urvina, L., Moya, R.: Evaluación de la incidencia de pellets y astillas de madera en el desempeño de un gasificador tipo “downdraft.” Rev. For. Mesoamericana Kurú 15, 25–36 (2018). https://doi.org/10.18845/rfmk.v15i1.3847

    Article  Google Scholar 

  26. Rios, M.L.V., González, A.M., Lora, E.E.S., del Olmo, O.A.: Reduction of tar generated during biomass gasification: a review. Biomass Bioenergy 108, 345–370 (2018). https://doi.org/10.1016/j.biombioe.2017.12.002

    Article  Google Scholar 

  27. Safarian, S., Unnþórsson, R., Richter, C.: A review of biomass gasification modelling. Renew. Sustain. Energy Rev. 110, 378–391 (2019). https://doi.org/10.1016/j.rser.2019.05.003

    Article  Google Scholar 

  28. Jarungthammachote, S., Dutta, A.: Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 49(6), 1345–1356 (2008). https://doi.org/10.1016/j.enconman.2008.01.006

    Article  Google Scholar 

  29. Wang, Y., Yoshiie, R., Ueki, Y., Naruse, I.: Characteristics of biomass gasification by oxygen-enriched air in small-scale auto-thermal packed-bed gasifier for regional distribution. Fuel 342, 127852 (2023). https://doi.org/10.1016/j.fuel.2023.127852

    Article  Google Scholar 

  30. Arâmburu, A., Lunkes, N., de Cademartori, P.H.G., Gatto, D.A., Missio, A.L., Delucis, R.A.: Forestry wastes: technical concepts, economic circularity, and sustainability approaches. In: Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M. (eds.) Handbook of waste biorefinery, pp. 369–415. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06562-0_14

    Chapter  Google Scholar 

  31. Awais, M., Li, W., Munir, A., Omar, M.M., Ajmal, M.: Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Convers. Biorefin. 11, 429–444 (2021). https://doi.org/10.1007/s13399-020-00690-5

    Article  Google Scholar 

  32. Reed, T.B., Das, A.:Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation. Solar Energy Research Institute. U.S. Department of Energy, Golden, Colorado, USA. P. 148 (1988) https://www.nrel.gov/docs/legosti/old/3022.pdf

  33. Song, H., Yang, G., Xue, P., Li, Y., Zou, J., Wang, S., Yang, H., Chen, H.: Recent development of biomass gasification for H2 rich gas production. Prog. Energy Combust. Sci. 10, 100059 (2022). https://doi.org/10.1016/j.jaecs.2022.100059

    Article  Google Scholar 

  34. Kong, G., Zhang, X., Wang, K., Li, J., Zhou, L., Wang, J., Zhang, X., Han, L.: Coupling biomass gasification and inline co-steam reforming: Synergistic effect on promotion of hydrogen production and tar removal. Fuel Proc Techn 243, 107689 (2023). https://doi.org/10.1016/j.fuproc.2023.107689

    Article  Google Scholar 

  35. Suryawanshi, S.J., Shewale, V.C., Thakare, R.S., Yarasu, R.B.: Parametric study of different biomass feedstocks used for gasification process of gasifier—a literature review. Biomass Convers. Biorefin. 1, 1–12 (2021). https://doi.org/10.1007/s13399-021-01805-2

    Article  Google Scholar 

  36. Agrawal, A., Sood, D.: Development and performance analysis of pine needle based downdraft gasifier system. In: Baredar, P.V., Tangellapalli, S., Solanki, C.S. (eds.) Advances in clean energy technologies: select proceedings of ICET 2020, pp. 163–170. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0235-1_13

    Chapter  Google Scholar 

  37. Chang, C.T., Costa, M., La Villetta, M., Macaluso, A., Piazzullo, D., Vanoli, L.: Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification. Energy 167, 766–780 (2019). https://doi.org/10.1016/j.energy.2018.11.012

    Article  Google Scholar 

  38. Rupesh, S., Muraleedharan, C., Arun, P.: Energy and exergy analysis of syngas production from different biomasses through air-steam gasification. Front. Energy 14, 607–619 (2020). https://doi.org/10.1007/s11708-016-0439-1

    Article  Google Scholar 

  39. Chaves, L.I., da Silva, M.J., de Souza, S.N.M., Secco, D., Rosa, H.A., Nogueira, C.E.C., Frigo, E.P.: Small-scale power generation analysis: downdraft gasifier coupled to engine generator set. Renew. Sustain. Energy Rev. 58, 491–549 (2016). https://doi.org/10.1016/j.rser.2015.12.033

    Article  Google Scholar 

  40. Littlejohns, J.V., Butler, J., Luque, L., Kannangara, M., Totolo, S.: Analysis of the performance of an integrated small-scale biomass gasification system in a Canadian context. Biomass Convers. Biorefin. 10, 311–323 (2020). https://doi.org/10.1007/s13399-019-00442-0

    Article  Google Scholar 

  41. Montiel-Bohórquez, N.D., Pérez, J.F.: Energy valorization strategies of fallen leaves and woody biomass in a based downdraft gasification-engine power plant. Sustain Energy Technol. Assess 49, 101749 (2022). https://doi.org/10.1016/j.seta.2021.101749

    Article  Google Scholar 

  42. La Villetta, M., Costa, M., Cirillo, D., Massarotti, N., Vanoli, L.: Performance analysis of a biomass powered micro-cogeneration system based on gasification and syngas conversion in a reciprocating engine. Energy Convers. Manag. 175, 33–48 (2018). https://doi.org/10.1016/j.enconman.2018.08.017

    Article  Google Scholar 

  43. Urvina LA.:Propuesta de minería de datos y análisis probabilístico para la estimación de variables de proceso utilizando series de tiempo en estado estacionario y algoritmos genéticos en un gasificador de tiro descendente. Informe de Proyecto de Graduación, Licenciatura en Ingeniería Química, Universidad de Costa Rica. San Jose, Costa Rica. p. 124 (2018)

  44. Moya, R., Tenorio, C.: Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioenergy 56, 14–21 (2013). https://doi.org/10.1016/j.biombioe.2013.04.013

    Article  Google Scholar 

  45. Navarro-Camacho, R., Esquivel-Segura, E., Briceño-Elizondo, E., Arias-Aguilar, D.: Estimating aboveground biomass for Eucalyptus saligna Sm. And Eucalyptus camaldulensis Dehn in the center region of Costa Rica. Rev. Forestal Mesoam Kuru 11, 22–33 (2014). https://doi.org/10.18845/rfmk.v11i27.1775

    Article  Google Scholar 

  46. ASTM D143–21: Standard test method for small clear specimens of timber. ASTM International, West Conshohocken (2021). https://doi.org/10.1520/D0143-21

    Book  Google Scholar 

  47. Seifert, K.: Zur frage der Cellulose-Schnellbestimmung nach der acetylaceton-methode. Das Papier 14, 104–106 (1960)

    Google Scholar 

  48. TAPPI. (2002) Technical Association of the Pulp and Paper Industry, US. Tappi T 222 om-02 revised 2002. Standart test for acid-insoluble lignin in wood and pulp. Parkway South Norcross, US, TAPPI.

  49. ASTM D5865–04: Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken (2019). https://doi.org/10.1520/D5865-13

    Book  Google Scholar 

  50. ASTM D1762–84: Standard test method for chemical analysis of wood charcoal. ASTM International, West Conshohocken (2021)

    Google Scholar 

  51. ASTM D1102–84: Standard test method for ash in wood. ASTM International, West Conshohocken (2021). https://doi.org/10.1520/D1102-84R21

    Book  Google Scholar 

  52. Morice, J.: Evaluación de la eficiencia energética de un sistema de gasificación comercial para la producción de electricidad a partir de residuos de madera. Informe de Proyecto de Graduación, Licenciatura en Ingeniería Química, Universidad de Costa Rica. San Jose, Costa Rica. P. 114 (2017)

  53. Centeno, F., Mahkamov, K., Silva Lora, E.E., Andrade, R.V.: Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renew. Energy 37, 97–108 (2012). https://doi.org/10.1016/j.renene.2011.06.008

    Article  Google Scholar 

  54. Soares, J., Oliveira, A.C.: Experimental assessment of pine wood chips gasification at steady and part-load performance. Biomass Bioenergy 139, 105625 (2020). https://doi.org/10.1016/j.biombioe.2020.105625

    Article  Google Scholar 

  55. Martínez, J.D., Mahkamov, K., Andrade, R.V., Silvaora, E.E.: Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew. Energy 38(1), 1e9 (2012). https://doi.org/10.1016/j.renene.2011.07.035

    Article  Google Scholar 

  56. Martínez, L.V., Rubiano, J.E., Figueredo, M., Gómez, M.F.: Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renew. Energy 148, 1216–1226 (2020). https://doi.org/10.1016/j.renene.2019.10.034

    Article  Google Scholar 

  57. Zhang, Y., Wan, L., Guan, J., Xiong, Q.A., Zhang, S., Jin, X.: A review on biomass gasification: effect of main parameters on char generation and reaction. Energy Fuels 34(11), 13438–13455 (2020). https://doi.org/10.1021/acs.energyfuels.0c02900

    Article  Google Scholar 

  58. Şen, A.U., Pereira, H.: State-of-the-art char production with a focus on bark feedstocks: processes, design, and applications. Processes 9(1), 87 (2021). https://doi.org/10.3390/pr9010087

    Article  Google Scholar 

  59. Vassilev, S.V., Vassileva, C.G., Vassil, S., Vassilev, V.S.: Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158, 330–350 (2015). https://doi.org/10.1016/j.fuel.2015.05.050

    Article  Google Scholar 

  60. Asmadi, M., Kawamoto, H., Saka, S.: Characteristics of softwood and hardwood pyrolysis in an ampoule reactor. J. Anal. Appl. Pyrolysis 124, 523–535 (2017). https://doi.org/10.1016/j.jaap.2017.01.029

    Article  Google Scholar 

  61. Madadian, E., Orsat, V., Lefsrud, M.: Comparative study of temperature impact on air gasification of various types of biomass in a research-scale down-draft reactor. Energy Fuels 31(4), 4045–4053 (2017). https://doi.org/10.1021/acs.energyfuels.6b03489

    Article  Google Scholar 

  62. Atnaw, S.M., Sulaiman, S.A., Yusup, S.: Syngas production from downdraft gasification of oil palm fronds. Energy 61, 491–501 (2013). https://doi.org/10.1016/j.energy.2013.09.039

    Article  Google Scholar 

  63. De Filippis, P., Scarsella, M., De Caprariis, B., Uccellari, R.: Biomass gasification plant and syngas clean-up system. Energy Procedia 75, 240–245 (2015). https://doi.org/10.1016/j.egypro.2015.07.318

    Article  Google Scholar 

  64. Channiwala, S., Parikh, P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  65. Dang, Q., Zhang, X., Zhou, Y., Jia, X.: Prediction and optimization of syngas production from a kinetic-based biomass gasification process model. Fuel Process Technol. 212, 106604 (2021). https://doi.org/10.1016/j.fuproc.2020.106604

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Vicerrectoría de Investigación y Extensión, of the Instituto Tecnológico de Costa Rica (ITCR, Cartago, Costa Rica) and the Chemical Engineering Department of the University of Costa Rica for this project’s financial support. Special thank to Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT) and Comisión Nacional de Ciencia y tecnología for economical sopport (FI-084-13).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Marco Chaves, Cindy Torres, Carolina Tenorio, Róger Moya and Dagoberto Arias-Aguilar. The first draft of the manuscript was written by Róger Moya and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roger Moya.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, M., Torres, C., Tenorio, C. et al. Syngas Characterization and Electric Performance Evaluation of Gasification Process Using Forest Plantation Biomass. Waste Biomass Valor 15, 1291–1308 (2024). https://doi.org/10.1007/s12649-023-02231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02231-3

Keywords

Navigation