Skip to main content

Investigation of Biomass Gasifier Product Gas Composition and its Characterization

  • Chapter
  • First Online:
Coal and Biomass Gasification

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Over the years, gasification technology has been established as one of the efficient thermochemical conversion processes catering to a wide variety of applications like thermal, power generation and liquid fuel production through Fischer–Tropsch route. However, there are issues with the conversion devices when the biomass feed material changes and hence understanding of product gas behaviour and its variability is important in order to utilize the biomass gasification technology effectively in the long run. The current chapter addresses these issues relating to biomass characterization, product gas estimation and utilization, and advances in this technology. Furthermore, an example of an equilibrium model formulation for prediction of product gas generated from rice husk has been presented, and a brief about reaction kinetics has been discussed. A comparison of model result and experimental data has also been briefly presented. The recent trends in biomass gasification research show a promising future for this technology. Moreover, techno-economic evaluations prove that biomass gasification is not only technically viable but also a sound economic option. It is expected that biomass gasification will contribute more to the global energy requirements and thus to the economy in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

V g :

Gas production rate (m3/s)

q g :

Net calorific value of gas (kJ/m3)

m b :

Rate of consumption of feedstock (kg/s)

q b :

Lower heating value of the feedstock (kJ/kg)

H sens :

Sensible heat in the gas (kW) given as, H sens  = C p V g (T g T a )

C p :

Specific heat of gas (kJ/m3°C)

T g :

Gas temperature (°C)

T a :

Ambient temperature (°C)

C :

Mass fraction of carbon

H :

Mass fraction of hydrogen

O :

Mass fraction of oxygen

N :

Mass fraction of nitrogen

S :

Mass fraction of sulphur

M C :

Molecular weight of carbon = 12.00 gm/mol

M H :

Molecular weight of hydrogen = 1.10 gm/mol

M O :

Molecular weight of oxygen = 16.00 gm/mol

M N :

Molecular weight of nitrogen = 14.01 gm/mol

M S :

Molecular weight of sulphur = 32.07 gm/mol

m :

Amount of oxygen per kmol of wood in the gasification reaction

x 1, x 2, x 3, x 4 and x 5 :

Coefficients of constituents of the product species of gasification reaction

M bm :

Molecular weight of biomass

Φ:

Relative moisture content of biomass

\( M_{{H_{2} O}} \) :

Molecular weight of water

w :

H 2 O molar fraction in biomass

\( H_{{f\;{\text{wood}}}}^{0} \) :

Heat of formation of wood

\( H_{{f\;H_{2} O(l)}}^{0} \) :

Heat of formation of liquid H 2 O

\( H_{vap} \) :

Heat of formation of vaporized H 2 O

\( H_{{f\;H_{2} O(vap)}}^{0} \) :

Heat of formation of water vapour

\( H_{f\;CO}^{0} \) :

Heat of formation of carbon monoxide

\( H_{{f\;CO_{2} }}^{0} \) :

Heat of formation of carbon dioxide

\( H_{{f\;CH_{4} }}^{0} \) :

Heat of formation of methane

\( \Delta T \) :

\( T_{2} - T_{1} \)

\( T_{1} \) :

Ambient temperature at the reduction zone

\( T_{2} \) :

Gasification temperature at the reduction zone

\( C_{{pH_{2} }} \) :

Specific heat of hydrogen

\( C_{pCO} \) :

Specific heat of carbon monoxide

\( C_{{pCO_{2} }} \) :

Specific heat of carbon dioxide

\( C_{{pH_{2} O}} \) :

Specific heat of water vapour

\( C_{{pCH_{4} }} \) :

Specific heat of methane

\( C_{{pN_{2} }} \) :

Specific heat of nitrogen

X :

Non-dimensional mass of sample undergoing reaction

t :

Time (s)

A :

Pre-exponential or frequency factor (s−1)

E :

Activation energy of the decomposition reaction (kJ mol−1)

R :

Universal gas constant (kJ mol−1 K−1)

T :

Absolute temperature (K)

n :

Order of reaction

\( m_{t} \) :

Weight of sample at time ‘t’ (gm)

\( m_{o} \) :

Initial weight of sample (gm)

\( m_{f} \) :

Final weight of sample remaining at the end of the reaction (gm)

h :

Enthalpy (J/kg)

\( h_{g} \) :

Enthalpy of gas (J/kg)

k :

Thermal conductivity (W/mK)

\( \mathop {m_{g} }\limits^{.} \) :

Mass flux of gas (kg m−2s−1)

\( Q_{i} \) :

Heat of combustion (J/kg)

x :

Spatial variables (m)

\( \rho \) :

Density (kg/m3)

\( T_{o} \) :

Initial temperature (°C)

\( \rho_{0} \) :

Initial density (kg/m3)

\( T_{\infty } \) :

Environmental temperature (°C)

\( T_{r} \) :

Radiation source temperature (°C)

\( \bar{h} \) :

Convection heat transfer coefficient (W/m2°C)

\( \varepsilon_{r} \) :

Radiation source emissivity

\( \varepsilon_{m} \) :

Emissivity of the material

\( \alpha_{m} \) :

Absorptive of the material

\( \sigma \) :

Stefan–Boltzmann constant (5.78 × 10−8 W/m2-K4)

References

  1. Singer C, Holmyard EJ, Hall AR, William TI (eds) (1958) A history of technology. Volume IV. The industrial revolution. Oxford, UK, Clarendon Press, pp c1750–c1850

    Google Scholar 

  2. Rambush NE (1923) Modern gas producers. Benn Bros. Ltd., London

    Google Scholar 

  3. Egloff G, Van Arsdell PM (1941) Octane rating relationship of aliphatic, alicyclic, mononuclear, aromatic hydrocarbons, alcohols. Ethers and Ketons J I Petrol 27:121

    Google Scholar 

  4. Rajvanshi AK (1986) Biomass gasification. Altern Energy Agric 2(4):82–102

    Google Scholar 

  5. Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press

    Google Scholar 

  6. Kalita P, Mahanta P, Saha UK (2015) Pressurized circulating fluidized bed technology. Energy Sci Technol Hydrogen Other Technol 11:481–526

    Google Scholar 

  7. Honkola T (2013) Industrial gasification demonstration plants by Metso, Finnish–Swedish Flame Days, Jivaskyile, Finland

    Google Scholar 

  8. Sansaniwal SK, Pal K, Rosen MA, Tyagi SK (2017) Recent advances in the development of biomass gasification technology: A comprehensive review. Renew Sustain Energy Rev 72:363–384

    Article  Google Scholar 

  9. MNRE annual report 2016–17, Govt of India

    Google Scholar 

  10. Verbong G, Christiaens W, Raven R, Balkema A (2010) Strategic Niche management in an unstable regime: biomass gasification in India. Environ Sci Policy 13(4):272–281

    Article  Google Scholar 

  11. Jain BC (2000) Commercialising biomass gasifiers: Indian experience. Energy Sustain Dev 4(3):72–82

    Article  Google Scholar 

  12. Mukhopadhyay K (2004) An assessment of a biomass gasification based power plant in the sunderbans. Biomass Bioenergy 27(3):253–264

    Article  Google Scholar 

  13. Dasappa S, Subbukrishna DN, Suresh KC, Paul PJ, Prabhu GS (2011) Operational experience on a grid connected 100kWe biomass gasification power plant in Karnataka,India. Energy Sustain Dev 15(3):231–239

    Article  Google Scholar 

  14. Singh J (2015) Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—a case study of Punjab. Renew Sustain Energy Rev 42:286–297

    Article  Google Scholar 

  15. Palit D, Sarangi GK (2014) Renewable energy programs for rural electrification: Experience and lessons from India. In: 3rd international conference developments in renewable energy technology (ICDRET), IEEE, May 2014, pp 1–6

    Google Scholar 

  16. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539

    Article  Google Scholar 

  17. Aswathanarayana U, Harikrishnan T, Kadher-Mohien TS (eds) (2010) Green energy: technology, economics and policy. CRC Press

    Google Scholar 

  18. Kalita P (2010) Characterization of loose biomass for gasification. MTech dissertation, IIT Guwahati, India

    Google Scholar 

  19. Moilanen A, Nasrullah M, Kurkela E (2009) The effect of biomass feedstock type and process parameters on achieving the total carbon conversion in the large scale fluidized bed gasification of biomass. Environ Prog Sustain 28(3):355–359

    Article  Google Scholar 

  20. Nemtsov DA, Zabaniotou A (2008) Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chem Eng J 143(1):10–31

    Article  Google Scholar 

  21. Saikia M, Bhowmik R, Baruah D, Dutta B, Baruah DC (2013) Prospect of bioenergy substitution in tea industries of North East India. IJMER 3(3):1272–1278

    Google Scholar 

  22. Van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London

    Google Scholar 

  23. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Elsevier Inc/Academic Press, UK

    Google Scholar 

  24. Weiland F, Nordwaeger M, Olofsson I, Wiinikka H, Nordin A (2014) Entrained flow gasification of torrefied wood residues. Fuel Process Technol 125:51–58

    Article  Google Scholar 

  25. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sustain Energy Rev 14(9):2841–2851

    Article  Google Scholar 

  26. Basu P (2006) Combustion and gasification in fluidized beds. Taylor and Francis Group/CRC Press, London

    Book  Google Scholar 

  27. Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sustain Energy Rev 13(3):594–604

    Article  Google Scholar 

  28. Palma CF (2013) Modelling of tar formation and evolution for biomass gasification: a review. Appl Energy 111:129–141

    Article  Google Scholar 

  29. Milne TA, Evans RJ, Abatzaglou N (1998) Biomass gasifier “Tars”: their nature, formation, and conversion. National Renewable Energy Laboratory, Golden, CO (US)

    Google Scholar 

  30. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresource Technol 83(1):55–63

    Article  Google Scholar 

  31. Wang L, Weller CL, Jones DD, Hanna MA (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32(7):573–581

    Article  Google Scholar 

  32. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol 83(1):47–54

    Article  Google Scholar 

  33. Asadullah M, Miyazawa T, Ito SI, Kunimori K, Yamada M, Tomishige K (2004) Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Appl Catal A-Gen 267(1):95–102

    Article  Google Scholar 

  34. Pérez JF, Melgar A, Benjumea PN (2012) Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: an experimental study. Fuel 96:487–496

    Article  Google Scholar 

  35. Wu CZ, Yin XL, Ma LL, Zhou ZQ, Chen HP (2009) Operational characteristics of a 1.2-MW biomass gasification and power generation plant. Biotechnol Adv 27(5):588–592

    Article  Google Scholar 

  36. Devi L, Ptasinski KJ, Janssen FJ (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140

    Article  Google Scholar 

  37. Gil J, Corella J, Aznar MP, Caballero MA (1999) Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution. Biomass Bioenerg 17(5):389–403

    Article  Google Scholar 

  38. Narvaez I, Orio A, Aznar MP, Corella J (1996) Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res 35(7):2110–2120

    Article  Google Scholar 

  39. Zainal ZA, Ali R, Lean CH, Seetharamu KN (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manage 42(12):1499–1515

    Article  Google Scholar 

  40. Lapuerta M, Hernández JJ, Tinaut FV, Horrillo A (2001) Thermochemical behaviour of producer gas from gasification of lignocellulosic biomass in SI engines. SAE technical paper

    Google Scholar 

  41. Ruggiero M, Manfrida G (1999) An equilibrium model for biomass gasification processes. Renew Energy 16(1–4):1106–1109

    Article  Google Scholar 

  42. Hughes WE, Larson ED (1998) Effect of fuel moisture content on biomass-IGCC performance. Trans-ASME, J Eng Gas Turb Power 120:455–459

    Article  Google Scholar 

  43. Ergüdenler A, Ghaly AE, Hamdullahpur F, Al-Taweel AM (1997) Mathematical modeling of a fluidized bed straw gasifier: Part III—Model verification. Energ Source 19(10):1099–1121

    Article  Google Scholar 

  44. Yang W, Ponzio A, Lucas C, Blasiak W (2006) Performance analysis of a fixed-bed biomass gasifier using high-temperature air. Fuel Process Technol 87(3):235–245

    Article  Google Scholar 

  45. Mathieu P, Dubuisson R (2002) Performance analysis of a biomass gasifier. Energy Convers Manage 43(9):1291–1299

    Article  Google Scholar 

  46. Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84(5):487–494

    Article  Google Scholar 

  47. Reed TB (1985) Principles and technology of biomass gasification. Advances in solar energy. Springer, US, pp 125–174

    Google Scholar 

  48. Kalita P, Mahanta P (2009) Equilibrium model development for prediction of producer gas composition of a cyclone gasifier. In: Proceedings on computer aided modeling and simulation in computational mechanics (CAMSCM), Itanagar, pp 167–180

    Google Scholar 

  49. de Souza-Santos ML (2010) Solid fuels combustion and gasification: modelling, simulation. CRC Press

    Google Scholar 

  50. Yassin L, Lettieri P, Simons SJ, Germanà A Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chem Eng J 146(3):315–327

    Google Scholar 

  51. Pipatmanomai S, Paterson N, Dugwell D, Kandiyoti R (2004) Kinetic modeling of coal pyrolysis in an atmospheric wire-mesh reactor. In: Joint international conference on “sustainable energy and environment” (SEE), Thailand, pp 589–594

    Google Scholar 

  52. Lau CW, Niksa S (1993) The impact of soot on the combustion characteristics of coal particles of various types. Combust Flame 95(1–2):1–21

    Article  Google Scholar 

  53. Cuoci A, Faravelli T, Frassoldati A, Grana R, Pierucci S, Ranzi E, Sommariva S (2009) Mathematical modelling of gasification and combustion of solid fuels and wastes. Chem Eng Trans 18:989–994

    Google Scholar 

  54. Sommariva S, Maffei T, Migliavacca G, Faravelli T, Ranzi E (2010) A predictive multi-step kinetic model of coal devolatilization. Fuel 89(2):318–328

    Article  Google Scholar 

  55. Alén R, Kuoppala E, Oesch P (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrol 36(2):137–148

    Article  Google Scholar 

  56. Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Source 19(9):989–1004

    Article  Google Scholar 

  57. Kaupp A (2013) Gasification of rice hulls: theory and praxis. Springer

    Google Scholar 

  58. Boateng AA, Walawender WP, Fan LT, Chee CS (1992) Fluidized-bed steam gasification of rice hull. Bioresource Technol 40(3):235–239

    Article  Google Scholar 

  59. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653

    Article  Google Scholar 

  60. Ergudenler A, Ghaly AE (1992) Determination of reaction kinetics of wheat straw using thermogravimetric analysis. Appl Biochem Biotech 34(1):75

    Article  Google Scholar 

  61. Duvvuri MS, Muhlenkamp SP, Iqbal KZ, Welker JR (1975) The pyrolysis of natural fuels. J Fire Flamm 6(2):468–477

    Google Scholar 

  62. Kalita P, Clifford MJ, Jiamjiroch K, Kalita K, Mahanta P, Saha UK (2013) Characterization and analysis of thermal response of rice husk for gasification applications. J Renew Sustain Energy 5(1):013119

    Article  Google Scholar 

  63. Kalita P, Mohan G, Pradeep Kumar G, Mahanta P (2009) Determination and comparison of kinetic parameters of low density biomass fuels. J Renew Sustain Energy 1(2):023109

    Article  Google Scholar 

  64. Ståhl K, Neergaard M (1998) IGCC power plant for biomass utilisation, Värnamo, Sweden. Biomass Bioenergy 15(3):205–211

    Article  Google Scholar 

  65. Acosta A, Aineto M, Iglesias I, Romero M, Rincon JM (2001) Physico-chemical characterization of slag waste coming from GICC thermal power plant. Mater Lett 50(4):246–250

    Article  Google Scholar 

  66. Dautzenberg K, Hanf J (2008) Biofuel chain development in Germany: Organisation, opportunities, and challenges. Energy Policy 36(1):485–489

    Article  Google Scholar 

  67. Mallick D, Mahanta P, Moholkar VS (2017) Co-gasification of coal and biomass blends: chemistry and engineering. Fuel 204:106–128

    Article  Google Scholar 

  68. Sansaniwal SK, Pal K, Rosen MA, Tyagi SK (2017) Recent advances in the development of biomass gasification technology: a comprehensive review. Renew Sustain Energy Rev 72:363–384

    Article  Google Scholar 

  69. Lau FS, Bowen DA, Dihu R, Doong S, Hughes EE, Remick R, Slimane R, Turn SQ, Zabransky R (2002) Techno-economic analysis of hydrogen production by gasification of biomass. In: Proceedings of the 2002 US DOE hydrogen and fuel cells annual program/lab R&D review

    Google Scholar 

  70. Arena U, Di Gregorio F, Santonastasi M (2010) A techno-economic comparison between two design configurations for a small scale, biomass-to-energy gasification based system. Chem Eng J 162(2):580–590

    Article  Google Scholar 

  71. Rodrigues M, Faaij AP, Walter A (2003) Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale. Energy 28(12):1229–1258

    Article  Google Scholar 

  72. Sara HR, Enrico B, Mauro V, Vincenzo N (2016) Techno-economic analysis of hydrogen production using biomass gasification-a small scale power plant study. Energy Proc 101:806–813

    Article  Google Scholar 

  73. Luz FC, Rocha MH, Lora EE, Venturini OJ, Andrade RV, Leme MM, del Olmo OA (2015) Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Convers Manage 103:321–337

    Article  Google Scholar 

  74. Buragohain B, Mahanta P, Moholkar VS (2010) Biomass gasification for decentralized power generation: the Indian perspective. Renew Sustain Energy Rev 14(1):73–92

    Article  Google Scholar 

  75. Dell’Antonia D, Cividino SR, Malev O, Pergher G, Gubiani R (2014) A techno-economic feasibility assessment on small-scale forest biomass gasification at a regional level. Appl Math Sci 8(131):6565–6576

    Google Scholar 

  76. Andersson J, Lundgren J (2014) Techno-economic analysis of ammonia production via integrated biomass gasification. Appl Energy 130:484–490

    Article  Google Scholar 

  77. Nouni MR, Mullick SC, Kandpal TC (2007) Biomass gasifier projects for decentralized power supply in India: a financial evaluation. Energy Policy 35(2):1373–1385

    Article  Google Scholar 

  78. Kunii D, Levenspiel O (2013) Fluidization engineering. Elsevier

    Google Scholar 

  79. Samiran NA, Jaafar MN, Ng JH, Lam SS, Chong CT (2016) Progress in biomass gasification technique—with focus on Malaysian palm biomass for syngas production. Renew Sustain Energy Rev 62:1047–1062

    Article  Google Scholar 

  80. Jorapur R, Rajvanshi AK (1997) Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass Bioenergy 13(3):141–146

    Article  Google Scholar 

  81. Mande S, Kumar A, Kishore VV (1999) A study of large-cardamom curing chambers in Sikkim. Biomass Bioenergy 16(6):463–473

    Article  Google Scholar 

  82. Jayah TH, Fuller RJ, Aye L, Stewart DF (2007) The potential for wood gasifiers for tea drying in Sri Lanka. Int Energy J 2(2)

    Google Scholar 

  83. Tippayawong N, Chaichana C, Promwangkwa A, Rerkkriangkrai P (2011) Gasification of cashew nut shells for thermal application in local food processing factory. Energy Sustain Dev 15(1):69–72

    Article  Google Scholar 

  84. Dutta PP, Baruah DC (2014) Gasification of tea (Camellia sinensis (L.) O. Kuntze) shrubs for black tea manufacturing process heat generation in Assam, India. Biomass Bioenergy 66:27–38

    Article  Google Scholar 

  85. Sutar KB, Kohli S, Ravi MR (2017) Design, development and testing of small downdraft gasifiers for domestic cookstoves. Energy 124:447–460

    Article  Google Scholar 

  86. Sridhar G, Paul PJ, Mukunda HS (2001) Biomass derived producer gas as a reciprocating engine fuel—an experimental analysis. Biomass Bioenergy 21(1):61–72

    Article  Google Scholar 

  87. Ramadas AS, Jayaraj S, Muralidharan C (2006) Power generation using coir pith and wood derived producer gas in a diesel engine. Fuel Process Technol 87:849–853

    Article  Google Scholar 

  88. Yin XL, Wu CZ, Zheng SP, Chen Y (2002) Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy 23(3):181–187

    Article  Google Scholar 

  89. Wu C, Yin X, Zheng S, Huang H, Chen Y (2008) A demonstration project for biomass gasification and power generation in China. Progress in thermochemical biomass conversion, p 465

    Google Scholar 

  90. Rinaldini CA, Allesina G, Pedrazzi S, Mattarelli E, Savioli T, Morselli N, Puglia M, Tartarini P (2017) Experimental investigation on a common rail diesel engine partially fuelled by syngas. Energy Convers Manage 138:526–537

    Article  Google Scholar 

  91. Boerrigter H, Calis HP, Slort DJ, Bodenstaff H (2004) Gas cleaning for integrated biomass gasification (BG) and Fischer-Tropsch (FT) systems; experimental demonstration of two BG-FT systems. Acknowledgement/Preface, p 51

    Google Scholar 

  92. Clausen LR, Elmegaard B, Ahrenfeldt J, Henriksen U (2011) Thermodynamic analysis of small-scale dimethyl ether (DME) and methanol plants based on the efficient two-stage gasifier. Energy 36(10):5805–5814

    Article  Google Scholar 

  93. Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9(10):2939–2977

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here is a part of a research project (project no. ECR/2016/001830) funded by Science and Engineering Research Board (SERB), Government of India. The financial support provided by the SERB for the project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, P., Baruah, D. (2018). Investigation of Biomass Gasifier Product Gas Composition and its Characterization. In: De, S., Agarwal, A., Moholkar, V., Thallada, B. (eds) Coal and Biomass Gasification. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7335-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7335-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7334-2

  • Online ISBN: 978-981-10-7335-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics