Skip to main content

Advertisement

Log in

Consecutive Production of Hydroalcoholic Extracts, Carbohydrates Derivatives and Silica Nanoparticles from Equisetum arvense

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Intelligent strategies should be used in biorefinery processes for the production of different high-value products from the same raw material. Focused on this, the biomass from Equisetum arvense (horsetail) was used for the consecutive production of an extract with medicinal properties, carbohydrate derivatives, heat energy and nanosilica. The biorefinery of horsetail involved a hydroalcoholic extraction, followed by acid hydrolysis and calcination. The yield of the hydroalcoholic extract was 20.2%; however, the yields of monomeric sugars, heat energy and silica varied with the conditions used in each step of the process. High-quality nanosilica could be obtained using mild acid hydrolysis conditions (120 °C, 1 h, H2SO4·2 wt%) followed by calcination at moderated temperature (650 °C); in this case, the yields of co-products were relatively low. However, such yields were increased by changing the hydrolysis temperature to 140 °C but the resulting silica nanoparticles had lower quality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, J.F., Yamaji, N.: Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11(8), 392–397 (2006)

    Article  Google Scholar 

  2. Holzhuter, G., Narayanan, K., Gerber, T.: Structure of silica in Equisetum arvense. Anal. Bioanal. Chem. 376(4), 512–517 (2003)

    Article  Google Scholar 

  3. Law, C., Exley, C.: New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol. 11, 112 (2011). doi:10.1186/1471-2229-11-112

    Article  Google Scholar 

  4. Gu, S., Zhou, J., Luo, Z., Wang, Q., Ni, M.: A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind. Crops Prod. 50, 540–549 (2013). doi:10.1016/j.indcrop.2013.08.004

    Article  Google Scholar 

  5. Umeda, J., Kondoh, K., Michiura, Y.: Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Mater. Trans. 48, 3095–3100 (2007). doi:10.2320/matertrans.MK200715

    Article  Google Scholar 

  6. Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X., An, D., Li, Y., Wang, Z.: A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresour. Technol. 101, 1263–1267 (2010). doi:10.1016/j.biortech.2009.09.045

    Article  Google Scholar 

  7. Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z.: Simultaneous preparation of silica and activated carbon from rice husk ash. J. Clean. Prod. 32, 204–209 (2012). doi:10.1016/j.jclepro.2012.03.021

    Article  Google Scholar 

  8. Zhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., Zhao, X.: A new method of utilizing rice husk: consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J. Hazard. Mater. 291, 65–73 (2015). doi:10.1016/j.jhazmat.2015.03.003

    Article  Google Scholar 

  9. Do Monte, F.H.M., Dos Santos, J.G., Russi, M., Bispo Lanziotti, V.M.N., Moreira Leal, L.K.A., De Andrade Cunha, G.M.: Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol. Res. 49, 239–243 (2004). doi:10.1016/j.phrs.2003.10.002

    Article  Google Scholar 

  10. Dos Santos, J.G., Blanco, M.M., Do Monte, F.H.M., Russi, M., Lanziotti, V.M.N.B., Leal, L.K.A.M., Cunha, G.M.: Sedative and anticonvulsant effects of hydroalcoholic extract of Equisetum arvense. Fitoterapia. 76, 508–513 (2005). doi:10.1016/j.fitote.2005.04.017

    Article  Google Scholar 

  11. Oh, H., Kim, D.H., Cho, J.H., Kim, Y.C.: Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. J. Ethnopharmacol. 95, 421–424 (2004). doi:10.1016/j.jep.2004.08.015

    Article  Google Scholar 

  12. Gandini, A., Lacerda, T.M.: From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015). doi:10.1016/j.progpolymsci.2014.11.002

    Article  Google Scholar 

  13. Pode, R.: Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 53, 1468–1485 (2016)

    Article  Google Scholar 

  14. Prado, A.G.S., Moura, A.O., Nunes, A.R.: Nanosized silica modified with carboxylic acid as support for controlled release of herbicides. J. Agric. Food Chem. 59, 8847–8852 (2011). doi:10.1021/jf202509g

    Article  Google Scholar 

  15. Wibowo, D., Zhao, C.X., Peters, B.C., Middelberg, A.P.J: Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 62, 12504–12511 (2014). doi:10.1021/jf504455x

    Article  Google Scholar 

  16. Siddique, R.: Utilization of silica fume in concrete: review of hardened properties. Resour. Conserv. Recycl. 55, 923–932 (2011). doi:10.1016/j.resconrec.2011.06.012

    Article  Google Scholar 

  17. Bamufleh, H.S., Alhamed, Y.A., Daous, M.A.: Furfural from midribs of date-palm trees by sulfuric acid hydrolysis. Ind. Crops Prod. 42, 421–428 (2013). doi:10.1016/j.indcrop.2012.06.008

    Article  Google Scholar 

  18. Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Sluiter, A., Templeton, D.: Preparation of samples for compositional. Analysis. Biomass analysis technology team Laboratory analytical procedure National Renewable energy Laboratory Version. pp. 1–9 (2004).

  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of structural carbohydrates and lignin in biomass, pp. 1–15 (2010)

  20. Sluiter, A., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass. Biomass analysis technology team laboratory analytical procedures, pp. 1–8 (2004)

  21. Merrill, A., Watt, B.: Energy value of foods—basis and derivation. USDA Agric. Res. Serv. Hum. Nutr. Res. Branch. 74, 109 (1973)

    Google Scholar 

  22. Oniszczuk, A., Podgórski, R., Oniszczuk, T., Żukiewicz-Sobczak, W., Nowak, R., Waksmundzka-Hajnos, M.: Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb. Ind. Crops Prod. 61, 377–381 (2014). doi:10.1016/j.indcrop.2014.07.036

    Article  Google Scholar 

  23. Chen, H., Wang, W., Martin, J.C., Oliphant, A.J., Doerr, P.A., Xu, J.F., DeBorn, K.M., Chen, C., Sun, L.: Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustain. Chem. Eng. 1, 254–259 (2013). doi:10.1021/sc300115r

    Article  Google Scholar 

  24. Pytlakowska, K., Kita, A., Janoska, P., Połowniak, M., Kozik, V.: Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 135, 494–501 (2012). doi:10.1016/j.foodchem.2012.05.002

    Article  Google Scholar 

  25. Lourençon, T. V., Hansel, F.A., Da Silva, T.A., Ramos, L.P., De Muniz, G.I.B., Magalhães, W.L.E.: Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 154, 82–88 (2015). doi:10.1016/j.seppur.2015.09.015

    Article  Google Scholar 

  26. Godin, B., Lamaudière, S., Agneessens, R., Schmit, T., Goffart, J.-P., Stilmant, D., Gerin, P.A., Delcarte, J.: Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Ind. Crops Prod. 48, 1–12 (2013). doi:10.1016/j.indcrop.2013.04.007

    Article  Google Scholar 

  27. López, F., García, M.T., Feria, M.J., García, J.C., de Diego, C.M., Zamudio, M.A.M., Díaz, M.J.: Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem. Eng. J. 240, 195–201 (2014). doi:10.1016/j.cej.2013.11.073

    Article  Google Scholar 

  28. Yemis, O., Mazza, G.: Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102, 7371–7378 (2011). doi:10.1016/j.biortech.2011.04.050

    Article  Google Scholar 

  29. Athinarayanan, J., Periasamy, V.S., Alhazmi, M., Alatiah, K.A., Alshatwi, A.A.: Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram. Int. 41, 275–281 (2014). doi:10.1016/j.ceramint.2014.08.069

    Article  Google Scholar 

  30. Kreyling, W.G., Semmler-Behnke, M., Chaudhry, Q.: A complementary definition of nanomaterial. Nano Today 5(3), 165-168 (2010)

    Article  Google Scholar 

  31. Cruz, J.C., Pfromm, P.H., Rezac, M.E.: Immobilization of Candida antarctica Lipase B on fumed silica. Process Biochem. 44, 62–69 (2009). doi:10.1016/j.procbio.2008.09.011

    Article  Google Scholar 

  32. Drummond, C., McCann, R., Patwardhan, S. V: A feasibility study of the biologically inspired green manufacturing of precipitated silica. Chem. Eng. J. 244, 483–492 (2014). doi:10.1016/j.cej.2014.01.071

    Article  Google Scholar 

  33. Li, X., Shi, B., Li, M., Mao, L.: Synthesis of highly ordered alkyl-functionalized mesoporous silica by co-condensation method and applications in surface coating with superhydrophilic/antifogging properties. J. Porous Mater. 22, 201–210 (2015). doi:10.1007/s10934-014-9886-4

    Article  Google Scholar 

Download references

Funding

The funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Fundação Araucária and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno D. Mattos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattos, B.D., Gomes, G.R., de Matos, M. et al. Consecutive Production of Hydroalcoholic Extracts, Carbohydrates Derivatives and Silica Nanoparticles from Equisetum arvense . Waste Biomass Valor 9, 1993–2002 (2018). https://doi.org/10.1007/s12649-017-9993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9993-y

Keywords

Navigation