Skip to main content

Advertisement

Log in

Optimization of Pelleting and Infrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The use of agricultural wastes as livestock feed is an appropriate method to convert these materials into high value-added materials. These wastes have low nutritional value per unit volume and high transportation, storage and labor costs when they are used in original form. Compaction of wastes in the form of pellet is a proper solution to solve these problems. The pellet drying stage is one of the most important pellet production processes that affect the quality of the pellets. In the present study, the impacts of moisture content, particle size, inlet air temperature of dryer and infrared power of dryer were investigated on properties of physical (unit and bulk density and shrinkage) and thermal (effective moisture diffusivity and specific energy consumption) properties of pellets produced from food and agriculture wastes. The results indicated that all independent variables had a significant negative effect on unit and bulk densities. The effective moisture diffusivity increased with the increase in particle size, infrared power and air temperature dryer. Also specific energy consumption in infrared-convection drying of pellets increased with finer grinding of raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b:

Constant regression coefficient

Cpa :

Specific heat capacity of air, 1.8288 kJ kg−1 °C−1

Cpv :

Specific heat capacity of vapor, 1.00416 kJ kg−1 °C−1

Deff :

Effective moisture diffusivity, m2 s−1

ha :

Absolute air humidity, kgvapor kgdry air−1

J0 :

Bessel function of the first kind and zero order

M:

Moisture content at any time, % dry basis

Mf :

Final moister content, % dry basis

Me :

Equilibrium moisture content, % dry basis

Mi :

Initial moisture content, % dry basis

m:

Number of independent variables

mvi :

Mass of removal water from infrared radiation, kg

mvc :

Mass of removal water from convective drying, kg

NFi :

Fick number (Defft/r2), s−1

P:

Infrared power, W

Q:

Inlet air to drying chamber, m3 s−1

r:

Cylinder radius, m

S:

Shrinkage, %

Se :

Specific energy consumption, kJ kg−1

Sec :

Se for convective drying, kJ kg−1

Sei :

Se for infrared drying, kJ kg−1

t:

Time, s

Tam :

Ambient air temperature, °C

Tin :

Inlet air temperature to drying chamber, °C

Wi :

Initial weight of samples, g

Ww :

Weight of water, g

Xi and Xj :

Independent variables

V:

Initial volume, m3

V0 :

Volume after drying, m3

Vh :

Specific air volume, m3 kg−1

y:

Response

α:

Roots of Jo(rα) = 0

ε:

Random error

n:

Number of terms

BD:

Bulk density

CP:

Crude protein

CV:

Coefficient of variation

D:

Desirability

IR:

Infrared radiation

MC:

Moisture content

MD:

Dry matter

MR:

Moisture ratio

PS:

Particle size

RSM:

Response surface methodology

SEC:

Specific energy consumption

UD:

Unit density

References

  1. Zainuddin, M.F., Rosnah, S., Noriznan, M.M., Dahlan, I.: Effect of moisture content on physical properties of animal feed pellets from pineapple plant waste. Agric. Agric. Sci. Proced. 2, 224–230 (2014). https://doi.org/10.1016/j.aaspro.2014.11.032

    Article  Google Scholar 

  2. Karkania, V., Fanara, E., Zabaniotou, A.: Review of sustainable biomass pellets production—a study for agricultural residues pellets’ market in Greece. Renew. Sustain. Energy Rev. 16(3), 1426–1436 (2012). https://doi.org/10.1016/j.rser.2011.11.028

    Article  Google Scholar 

  3. Adapa, P.K., Schoenau, G.J., Tabil, L.G., Arinze, E.A., Singh, A.K., Dalai, A.K.: Customized and value-added high quality alfalfa products: a new concept. Agricultural Engineering International: the CIGR Ejournal, vol IX (2007)

  4. Briggs, J., Maier, D., Watkins, B., Behnke, K.: Effect of ingredients and processing parameters on pellet quality. Poult. Sci. 78(10), 1464–1471 (1999)

    Article  Google Scholar 

  5. Gardner, W., Von Keyserlingk, M., Shelford, J., Fisher, L.: Effect of feeding textured concentrates with alfalfa cubes to lactating dairy cows producing low fat milk. Can. J. Anim. Sci. 77(4), 735–738 (1997)

    Article  Google Scholar 

  6. Sogunle, O.M., Olatoye, B.B., Egbeyale, L.T., Jegede, A.V., Adeyemi, O.A., Ekunseitan, D.A., Bello, K.O.: Feed forms of different particle sizes: effects on growth performance, carcass characteristics, and intestinal villus morphology of cockerel chickens. Pac. J. Sci. Technol. 14, 405–415 (2013)

    Google Scholar 

  7. Falk, D.: Pelleting cost center, 3rd edn. In: McElihiney M.M. (ed.) Feed Manufacturing Technology, American Feed Industry Association, Arlington (1985)

    Google Scholar 

  8. Demirbas, A., Sahin-Demirbas, A.: Briquetting properties of biomass waste materials. Energy Sour. 26(1), 83–91 (2004). https://doi.org/10.1080/00908310490251918

    Article  Google Scholar 

  9. Adapa, P.K., Tabil, L.G., Schoenau, G.J.: Factors affecting the quality of biomass pellet for biofuel and energy analysis of pelleting process. Int. J. Agric. Biol. Eng. 6(2), 1–12 (2013)

    Google Scholar 

  10. Serrano, C., Monedero, E., Lapuerta, M., Portero, H.: Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 92(3), 699–706 (2011). https://doi.org/10.1016/j.fuproc.2010.11.031

    Article  Google Scholar 

  11. Mani, S., Tabil, L.G., Sokhansanj, S.: Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenerg. 30(7), 648–654 (2006)

    Article  Google Scholar 

  12. Tumuluru, J.S.: Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 119, 44–57 (2014). https://doi.org/10.1016/j.biosystemseng.2013.11.012

    Article  Google Scholar 

  13. Kaliyan, N., Morey, R.V.: Densification characteristics of corn cobs. Fuel Process. Technol. 91(5), 559–565 (2010). https://doi.org/10.1016/j.fuproc.2010.01.001

    Article  Google Scholar 

  14. Zafari, A., Kianmehr, M.H.: Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste. Bioresources 7(4), 4704–4714 (2012)

    Article  Google Scholar 

  15. Sundaram, V., Muthukumarappan, K.: Influence of AFEX™ pretreated corn stover and switchgrass blending on the compaction characteristics and sugar yields of the pellets. Ind. Crops Prod. 83, 537–544 (2016). https://doi.org/10.1016/j.indcrop.2015.12.072

    Article  Google Scholar 

  16. Moritz, J., Beyer, R., Wilson, K., Cramer, K., McKinney, L., Fairchild, F.: Effect of moisture addition at the mixer to a corn-soybean-based diet on broiler performance. J. Appl. Poult. Res. 10(4), 347–353 (2001)

    Article  Google Scholar 

  17. Mani, S., Tabil, L., Sokhansanj, S.: Compaction of biomass grinds-an overview of compaction of biomass grinds. Powder Handl. Process. 15(3), 160–168 (2003)

    Google Scholar 

  18. Li, Y., Liu, H.: High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenerg. 19(3), 177–186 (2000)

    Article  Google Scholar 

  19. Sokhansanj, S., Mani, S., Bi, X., Zaini, P., Tabil, L.: Binderless pelletization of biomass. In: 2005 ASAE Annual Meeting 2005, p. 1. American Society of Agricultural and Biological Engineers

  20. Mani, S., Tabil, L.G., Sokhansanj, S.: Specific energy requirement for compacting corn stover. Bioresour. Technol. 97(12), 1420–1426 (2006). https://doi.org/10.1016/j.biortech.2005.06.019

    Article  Google Scholar 

  21. Shaw, M., Karunakaran, C., Tabil, L.: Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 103(2), 198–207 (2009)

    Article  Google Scholar 

  22. Hott, J., Buchanan, N., Cutlip, S., Moritz, J.: The effect of moisture addition with a mold inhibitor on pellet quality, feed manufacture, and broiler performance. J. Appl. Poult. Res. 17(2), 262–271 (2008)

    Article  Google Scholar 

  23. Mišljenović, N., Čolović, R., Vukmirović, Đ, Brlek, T., Bringas, C.S.: The effects of sugar beet molasses on wheat straw pelleting and pellet quality. A comparative study of pelleting by using a single pellet press and a pilot-scale pellet press. Fuel Process. Technol. 144, 220–229 (2016). https://doi.org/10.1016/j.fuproc.2016.01.001

    Article  Google Scholar 

  24. Kaliyan, N., Morey, R.V.: Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3), 337–359 (2009)

    Article  Google Scholar 

  25. Lu, D., Tabil, L.G., Wang, D., Wang, G., Emami, S.: Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 69, 287–296 (2014). https://doi.org/10.1016/j.biombioe.2014.07.029

    Article  Google Scholar 

  26. Wang, Z., Xiao, B., Wang, M., Zhang, J., Ding, T., Liu, X., Yang, D.: Drying kinetics of extruded pellets in fixed beds. Dry. Technol. 30(16), 1881–1889 (2012). https://doi.org/10.1080/07373937.2012.707161

    Article  Google Scholar 

  27. Samuelsson, R., Larsson, S.H., Thyrel, M., Lestander, T.A.: Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Appl. Energy 99, 109–115 (2012). https://doi.org/10.1016/j.apenergy.2012.05.004

    Article  Google Scholar 

  28. Fasina, O., Sokhanranj, S.: Modelling the bulk cooling of alfalfa pellets. Dry. Technol. 13(8), 1881–1904 (1995). https://doi.org/10.1080/07373939508917055

    Article  Google Scholar 

  29. Amiri Chayjan, R., Kaveh, M., Khayati, S.: Modeling drying characteristics of hawthorn fruit under microwave-convective conditions. J. Food Process. Preserv. 39(3), 239–253 (2015)

    Article  Google Scholar 

  30. Das, I., Das, S., Bal, S.: Specific energy and quality aspects of infrared (IR) dried parboiled rice. J. Food Eng. 62(1), 9–14 (2004)

    Article  Google Scholar 

  31. Riadh, M.H., Ahmad, S.A.B., Marhaban, M.H., Soh, A.C.: Infrared heating in food drying: an overview. Dry. Technol. 33(3), 322–335 (2015)

    Article  Google Scholar 

  32. Celma, A.R., Rojas, S., Lopez-Rodriguez, F.: Mathematical modelling of thin-layer infrared drying of wet olive husk. Chem. Eng. Process. 47(9), 1810–1818 (2008)

    Article  Google Scholar 

  33. Das, I., Das, S., Bal, S.: Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. J. Food Eng. 95(1), 166–171 (2009)

    Article  Google Scholar 

  34. Liu, H., Chen, M., Han, Z., Chen, G., Lu, T.: Nonisothermal kinetics based on two-stage scheme for co-drying of biomass and lignite. Chem. Eng. Commun. 203(1), 18–27 (2016)

    Article  Google Scholar 

  35. Chen, N.N., Chen, M.Q., Fu, B.A., Song, J.J.: Far-infrared irradiation drying behavior of typical biomass briquettes. Energy 121, 726–738 (2017). https://doi.org/10.1016/j.energy.2017.01.054

    Article  Google Scholar 

  36. Wongsiriamnuay, T., Tippayawong, N.: Effect of densification parameters on the properties of maize residue pellets. Biosyst. Eng. 139, 111–120 (2015). https://doi.org/10.1016/j.biosystemseng.2015.08.009

    Article  Google Scholar 

  37. Vega-Gálvez, A., Lemus-Mondaca, R., Plaza-Sáez, D., Pérez-Won, M.: Effect of air-temperature and diet composition on the drying process of pellets for japanese abalone (Haliotis discus hannai) feeding. Food Sci. Technol. 31(3), 694–702 (2011)

    Article  Google Scholar 

  38. Adapa, P., Tabil, L., Schoenau, G., Sokhansanj, S.: Pelleting characteristics of fractionated sun-cured and dehydrated alfalfa grinds. Appl. Eng. Agric. 20(6), 813–820 (2004)

    Article  Google Scholar 

  39. Fasina, O.: Physical properties of peanut hull pellets. Bioresour. Technol. 99(5), 1259–1266 (2008)

    Article  Google Scholar 

  40. Parsons, A.S., Buchanan, N.P., Blemings, K.P., Wilson, M.E., Moritz, J.S.: Effect of corn particle size and pellet texture on broiler performance in the growing phase. J. Appl. Poult. Res. 15(2), 245–255 (2006). https://doi.org/10.1093/japr/15.2.245

    Article  Google Scholar 

  41. White, N., Jayas, D.: Physical properties of canola and sunflower meal pellets. Can. Biosyst. Eng. 43, 3.49–3.52 (2001)

    Google Scholar 

  42. Council, N.R.: Nutrient Requirements of Sheep, Sixth Revised Edition. National Academies, Washington D.C (1985)

  43. Tumuluru, J.S., Wright, C.T., Hess, J.R., Kenney, K.L.: A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 5(6), 683–707 (2011)

    Article  Google Scholar 

  44. Tumuluru, J.S., Tabil, L., Opoku, A., Mosqueda, M.R., Fadeyi, O.: Effect of process variables on the quality characteristics of pelleted wheat distiller’s dried grains with solubles. Biosyst. Eng. 105(4), 466–475 (2010). https://doi.org/10.1016/j.biosystemseng.2010.01.005

    Article  Google Scholar 

  45. ASABE Standard: Cubes, Pellets, and Crumbles Definitions and Methods for Determining Density, Durability and Moisture Content. In American Society of Agricultural and Biological Engineers, ASAE S269.4. Michigan (2007)

    Google Scholar 

  46. Motevali, A., Minaei, S., Khoshtaghaza, M.H., Amirnejat, H.: Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 36(11), 6433–6441 (2011). https://doi.org/10.1016/j.energy.2011.09.024

    Article  Google Scholar 

  47. Khuri, A., Cornell, J.: Response Surface Designs and Analysis, pp. 168–188. Marcel Dekker, New York (1987)

    Google Scholar 

  48. Mohammadi, A., Ghasemzadeh-Mohammadi, V., Haratian, P., Khaksar, R., Chaichi, M.: Determination of polycyclic aromatic hydrocarbons in smoked fish samples by a new microextraction technique and method optimisation using response surface methodology. Food Chem. 141(3), 2459–2465 (2013)

    Article  Google Scholar 

  49. Lerma-Arce, V., Oliver-Villanueva, J.-V., Segura-Orenga, G.: Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenerg. 99, 90–96 (2017). https://doi.org/10.1016/j.biombioe.2017.02.018

    Article  Google Scholar 

  50. Zafari, A., Kianmehr, M.H., Abdolahzadeh, R.: Modeling the effect of extrusion parameters on density of biomass pellet using artificial neural network. Int. J. Recycl. Org. Waste Agric. 2(1), 9 (2013)

    Article  Google Scholar 

  51. Tran, Q.D., Hendriks, W.H., van der Poel, A.F.B.: Effects of drying temperature and time of a canine diet extruded with a 4 or 8 mm die on physical and nutritional quality indicators. Anim. Feed Sci. Technol. 165(3–4), 258–264 (2011). https://doi.org/10.1016/j.anifeedsci.2011.03.009

    Article  Google Scholar 

  52. Ghasemi, A., Sadeghi, M., Mireei, S.A.: Multi-Stage Intermittent Drying of Rough Rice in Terms of Tempering and Stress Cracking Indices and Moisture Gradients Interpretation. Dry. Technol. (2017). https://doi.org/10.1080/07373937.2017.1303777

    Article  Google Scholar 

  53. Puig-Arnavat, M., Shang, L., Sárossy, Z., Ahrenfeldt, J., Henriksen, U.B.: From a single pellet press to a bench scale pellet mill—pelletizing six different biomass feedstocks. Fuel Process. Technol. 142, 27–33 (2016). https://doi.org/10.1016/j.fuproc.2015.09.022

    Article  Google Scholar 

  54. Caparino, O., Tang, J., Nindo, C., Sablani, S., Powers, J., Fellman, J.: Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. J. Food Eng. 111(1), 135–148 (2012)

    Article  Google Scholar 

  55. Madiouli, J., Lecomte, D., Nganya, T., Chavez, S., Sghaier, J., Sammouda, H.: A method for determination of porosity change from shrinkage curves of deformable materials. Dry. Technol. 25(4), 621–628 (2007). https://doi.org/10.1080/07373930701227185

    Article  Google Scholar 

  56. Kurozawa, L.E., Hubinger, M.D., Park, K.J.: Glass transition phenomenon on shrinkage of papaya during convective drying. J. Food Eng. 108(1), 43–50 (2012)

    Article  Google Scholar 

  57. Zhang, X.Y., Chen, M.Q., Huang, Y.W., Xue, F.: Isothermal hot air drying behavior of municipal sewage sludge briquettes coupled with lignite additive. Fuel 171, 108–115 (2016). https://doi.org/10.1016/j.fuel.2015.12.052

    Article  Google Scholar 

  58. Markowski, M., Sobieski, W., Konopka, I., Tańska, M., Białobrzewski, I.: Drying characteristics of barley grain dried in a spouted-bed and combined IR-convection dryers. Dry. Technol. 25(10), 1621–1632 (2007)

    Article  Google Scholar 

  59. Xu, M., Heng, P.W.S., Liew, C.V.: Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: a mechanistic view. Int. J. Pharm. 499(1–2), 29–37 (2016). https://doi.org/10.1016/j.ijpharm.2015.12.068

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this research was received from Bu-Ali Sina University, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Amiri Chayjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Chayjan, R.A. Optimization of Pelleting and Infrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM). Waste Biomass Valor 10, 1711–1729 (2019). https://doi.org/10.1007/s12649-017-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0178-5

Keywords

Navigation