Skip to main content

Advertisement

Log in

Co-valorization of Crude Glycerol Waste Streams with Conventional and/or Renewable Fuels for Power Generation and Industrial Symbiosis Perspectives

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Crude glycerol is the principal by-product of biodiesel industry, accounting for 10 wt% of biodiesel production. As the production of biodiesel grows, the environmental and sustainable valorization of crude glycerol becomes an imperative task which affects directly the biodiesel production cost. The present study focuses on co-valorization of crude glycerol with conventional and/or renewable resources. The use of pyrolysis and gasification, as waste management practices, closing the loop in energy and agriculture, by using the extracted oil for biodiesel production and the remaining residual biomass for combined heat and power generation, has great potential in a circular economy. The paper is of scientific interest as it investigates the valorization of glycerol waste streams produced from small-scale biodiesel plants, targeting to an effective management solution of the above streams in countries such as Greece, where a chemical biorefinery is not viable due to small availability of glycerol supply. Results have shown that co-valorization of crude glycerol with waste biomass fulfilling the energetic needs of the biodiesel plant within the boundaries of the company, can contribute in decreasing the cost of biodiesel production, while providing a rather short-term solution to the existing environmental problem of waste glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin, M., Eklund, M.: Improving the environmental performance of biofuels with industrial symbiosis. Biomass Bioenergy 35, 1747–1755 (2011)

    Article  Google Scholar 

  2. Dasari, M.A., Kiatsimkul, P.P., Sutterlin, W.R., Suppes, G.J.: Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A Gen. 281(1–2), 225–231 (2005)

    Article  Google Scholar 

  3. European Biodiesel Board, Biodiesel Production Statistics. <http://www.ebb.eu.org/stats.php>. Accessed 15 Dec 2014

  4. Pagliaro, M., Rossi, M.: The Future of Glycerol, Green Chemistry Series, 2nd edn. RSC Publishing, Cambridge (2010)

    Google Scholar 

  5. Schröder, A., Südekum, K.H.: Glycerol as a by-product of biodiesel production in diets for ruminants. In: Proceedings of the 10th international rapeseed conference. The regional institute, Ltd (1999)

  6. Pachauri, N., He, B.: Value-added utilization of crude glycerol from biodiesel, production: a survey of current research activities. An ASABE meeting presentation 2000, 066223, Portland, Oregon 9–12 July (2006)

  7. Johnson, D.T., Taconi, K.A.: The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26, 338–348 (2007)

    Article  Google Scholar 

  8. Fernadez, Y., Arenillas, A., Diez, M.A., Pis, J.J., Menendez, J.A.: Pyrolysis of glycerol over activated carbons for syngas production. J. Anal. Appl. Pyrol. 84(2), 145–150 (2009)

    Article  Google Scholar 

  9. Hedtke, D.: Glycerine processing. In: Hui, Y.H. (ed.) Bailey’s industrial oil and fat products,Vol. 5: industrial and consumer nonedible products from oils and fats, pp. 275–308. Wiley, New York (1996)

    Google Scholar 

  10. Almeida, J.R.M., Fávaro, L.C.L., Quirino, B.F.: Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuel. 5, 48 (2012)

    Article  Google Scholar 

  11. European Union Climate and Energy Package. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions COM (2010) 265, 26.5.2010. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0265:FIN:en:PDF. Accessed 15 Dec 2014

  12. 6th Environment Action programme (6EAP). Final report for the assessment of the 6th environment action programme, 2011. http://www.ecologic.eu/files/attachments/Projects/2010/ecologic_6eap_report.pdf. Accessed 15 Dec 2014

  13. 7th Environment Action programme to 2020 (7EAP). http://ec.europa.eu/environment/newprg/. Accessed 15 Dec 2014

  14. Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013D1386. Accessed 15 Dec 2014

  15. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  Google Scholar 

  16. Kim, Y.C., Park, N.C., Shin, J.S., Lee, S.R., Lee, Y.J., Moon, D.J.: Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal. Today 87, 153–162 (2003)

    Article  Google Scholar 

  17. Zheng, Y., Chen, X., Shen, Y.: Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem. Rev. 108, 5253–5277 (2008)

    Article  Google Scholar 

  18. Roy, D., Subramaniam, B., Chaudhari, R.V.: Aqueous phase hydrogenolysis of glycerol to 1, 2-propanediol without external hydrogen addition. Catal. Today 156, 31–37 (2010)

    Article  Google Scholar 

  19. Vasiliadou, E.S., Heracleous, E., Vasalos, I.A., Lemonidou, A.A.: Ru-based catalysts for glycerol hydrogenolysis—effect of support and metal precursor. Appl. Catal. B Environ. 92, 90–99 (2009)

    Article  Google Scholar 

  20. Huang, Z., Cui, F., Kang, H., Chen, J., Xia, C.: Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1, 2-propanediol: effect of residual sodium. Appl. Catal. A Gen. 366, 288–298 (2009)

    Article  Google Scholar 

  21. Vasiliadou, E.S., Yfanti, V.L., Lemonidou, A.A.: One-pot tandem processing of glycerol stream to 1, 2-propanediol with methanol reforming as hydrogen donor reaction. Appl. Catal. B Environ. 163, 258–266 (2015)

    Article  Google Scholar 

  22. Wang, K., Hawley, M.C., DeAthos, S.J.: Conversion of glycerol to 1, 3-propanediol via selective dehydroxylation. Ind. Eng. Chem. Res. 42, 2913–2923 (2003)

    Article  Google Scholar 

  23. Saxena, R.K., Anand, P., Saran, S., Isar, J.: Microbial production of 1, 3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27, 895–913 (2009)

    Article  Google Scholar 

  24. Carrettin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J., Hutchings, G.J.: Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys. 5, 1329–1336 (2003)

    Article  Google Scholar 

  25. Garcia, R., Besson, M., Gallezot, P.: Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A Gen. 127, 165–176 (1995)

    Article  Google Scholar 

  26. Porta, F., Prati, L.: Selective oxidation of glycerol to sodium glycerate with gold-oncarbon catalyst: an insight into reaction selectivity. J. Catal. 224, 397–403 (2004)

    Article  Google Scholar 

  27. Kesling, H.S., Karas, L.J., Liotta, F.J. Jr.: US Patent 5308365; 1994. 28

  28. Gupta, VP.: Glycerine ditertiary butylether preparation. US Patent 5476971; 1995

  29. Jaecker-Voirol, A., Durand, I., Hillion, G., Delfort, B., Montagne, X.: Glycerin for new biodiesel formulation. Oil Gas Sci. Technol. 63(4), 395–404 (2008)

    Article  Google Scholar 

  30. Day, P., McNeil, J., Sirovski, F.: (E)mmission imposible? Emmission control. TCE—the chemical engineer, IchemE, Issue 839 May 2011. www.tcetoday.com and http://www.aquafuelresearch.com/uploads/9/7/3/7/973719/emissionimpossible.pdf. Accessed 15 Dec 2014

  31. Quispe, C.A.G.C., Coronado, J.R., Carvalho Jr, J.A.: Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27, 475–493 (2013)

    Article  Google Scholar 

  32. Patzer, R.: Stack emissions evaluation: combustion of crude glycerin and yellow grease in an industrial fire tube boiler. Agricultural Utilization Research Institute, Marshall, MN, USA (2007)

  33. Striugas, N., Slanciauskas, A., Makareviciene, V., Gumbyte, M., Janulis, P.: Processing of the glycerol fraction from biodiesel production plants to provide new fuels for heat generation. Energetika 54, 5–12 (2008)

    Google Scholar 

  34. Metzger, B.: Glycerol combustion (MSc. Thesis), North Carolina State University, Raleigh, NC, USA (2007)

  35. Bohon, M.D., Metzger, B.A., Linak, W.P., King, C.J., Roberts, W.L.: Glycerol combustion and emissions. Proc. Combust. Inst. 33, 2717–2724 (2011)

    Article  Google Scholar 

  36. Coronado, C.R., Carvalho Jr, J.A., Quispe, C.A., Sotomonte, C.R.: Ecological efficiency in glycerol combustion. Appl. Therm. Eng. 63, 97–104 (2014)

    Article  Google Scholar 

  37. Dou, B., Dupont, V., Rickett, G., Blakeman, N., Williams, P.T., Chen, H., Ding, Y., Ghadiri, M.: Thermogravimetric kinetics of crude glycerol. Bioresource Technol. 100, 3540–3547 (2009)

    Article  Google Scholar 

  38. Valliyappan, T., Bakhshi, N.N., Dalai, A.K.: Pyrolysis of glycerol for the production of hydrogen or syngas. Bioresour. Technol. 99, 4476–4483 (2008)

    Article  Google Scholar 

  39. Valliyappan, T.: Hydrogen or syngas production from glycerol using pyrolysis and steam gasification processes, Master Thesis, Saskatchewan University, Canada (2004)

  40. Silva, J.M., Soria, M.A., Madeira, L.M.: Challenges and strategies for optimization of glycerol steam reforming process. Renew. Sustain. Energy Rev. 42, 1187–1213 (2015)

    Article  Google Scholar 

  41. Wang, X., Wang, S., Li, H., Liu, B., Ma, X.: Thermodynamic analysis of glycerin steam reforming. Energy Fuel 22, 4285–4291 (2008)

    Article  Google Scholar 

  42. Rossi, C.C.R.S., Alonso, C.G., Antunes, O.A.C., Guirardello, R., Cardozo-Filho, L.: Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production. Int. J. Hydrog. Energy 34, 323–332 (2009)

    Article  Google Scholar 

  43. Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., Ding, Y.: Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. Int. J. Hydrog. Energy 34, 7208–7222 (2009)

    Article  Google Scholar 

  44. Cortright, R.D., Davda, R.R., Dumesic, J.A.: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964 (2002)

    Article  Google Scholar 

  45. Nilles, D.: A glycerin factor, biodiesel magasine, grand forks, Bbi international, Αugust/September 2005. http://www.biodieselmagazine.com/articles/377/a-glycerin-factor/. Accessed 15 Dec. 2014

  46. Hirai, T., Ikenaga, N.-O., Miyake, T., Suzuki, T.: Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuel 9, 1761–1762 (2005)

    Article  Google Scholar 

  47. Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W.: Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int. J. Hydrog. Energy 32, 2367–2373 (2007)

    Article  Google Scholar 

  48. Adhikari, S., Fernando, S.D., To, S.F., Bricka, R.M., Steele, P.H., Haryanto, A.: Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuel 22, 1220–1226 (2008)

    Article  Google Scholar 

  49. Cui, Y., Galvita, V., Rihko-Struckmann, L., Lorenz, H., Sundmacher, K.: Steam reforming of glycerol: the experimental activity of La1−xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium. Appl. Catal. B Environ. 90, 29–37 (2009)

    Article  Google Scholar 

  50. Chertow, M.R.: Uncovering industrial symbiosis. J. Ind. Ecol. 11(1), 11–30 (2007)

    Article  Google Scholar 

  51. Chertow, M.R.: Industrial symbiosis: a multi-firm approach to sustainability. In: Greening of industry network conference (1999)

  52. Cecelja, F., Raafat, T., Trokanas, N., Innes, S., Smith, M., Yang, A., Zorgios, Y., Korkofygas, A., Kokossis, A.: e-Symbiosis: technology-enabled support for industrial symbiosis targeting small and medium enterprises and innovation. J. Clean. Prod. 98, 336–352 (2015)

    Article  Google Scholar 

  53. Altham, J., van Berkel, R.: Industrial symbiosis for regional sustainability: an update on Australian initiatives. In: 11th international, sustainable development research conference, Manchester 29–30 Mar 2004

  54. Heeres, R.R., Vermeulen, W.J.V., de Walle, F.B.: Eco-industrial park initiatives in the USA and the Netherlands: first lessons. J. Clean. Prod. 12, 985–995 (2004)

    Article  Google Scholar 

  55. Sims, B.: Benchmark energy supplies UND glycerin for coal-fired operations. Biodiesel Magasine, November 30, 2011. http://www.biodieselmagazine.com/articles/8214/benchmark-energy-supplies-und-glycerin-for-coal-fired-operations. Accessed 15 Dec 2014 57

  56. EPA—United States Environmental Protection Agency, Emissions Standards for Boilers and Process Heaters and Commercial/Industrial Solid Waste Incinerators. http://www.epa.gov/air/oaqps/combustion/actions.html. Accessed 15 Dec 2014

  57. Appleby, D.B., Spooner-Wyman, J.K.: US Patent 20077195656B2, 2007

  58. Bae, J.S., Lee, D.W., Lee, Y.J., Park, S.J., Hong, J.C., Kim, J.G., Lee, B.H., Jeon, C.H., Han, C., Choi, Y.C.: Production of the glycerol-impregnated hybrid coal and its characterization. Fuel 118, 33–40 (2014)

    Article  Google Scholar 

  59. Manara, P., Zabaniotou, A.: Co-pyrolysis of bio-diesel derived glycerol with Greek lignite: a laboratory study. J. Anal. Appl. Pyrol. 100, 166–172 (2013)

    Article  Google Scholar 

  60. Yan, W., Hoekman, S.: Dust suppression with glycerin from biodiesel production: a review. J. Environ. Prot. 3(2), 218–224 (2012)

    Article  Google Scholar 

  61. Bunyamin, A.: Coal dust suppressant, Master Thesis, 2011

  62. EPA—Extramural research, Zero Waste Biodiesel: using Glycerin and Biomass to Create Renewable Energy. http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/8697/report/F/. Accessed 15 Dec 2014

  63. Sakkampang, C., Wongwuttanasatian, T.: Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel 115, 186–189 (2014)

    Article  Google Scholar 

  64. Raslavicius, L.: Characterization of the woody cutting waste briquettes containing absorbed glycerol. Biomass Bioenergy 45, 144–151 (2012)

    Article  Google Scholar 

  65. Sricharoenchaikul, V., Puavilai, D., Thassanaprichayanont, S., Atong, D.: Investigation on thermochemical conversion of pelletized Jatropha residue and glycerol waste using single particle reactivity technique. Chem. Eng. J. 176–177, 217–224 (2011)

    Article  Google Scholar 

  66. Delgado, R., Rosas, J.G., Gómez, N., Martínez, O., Sanchez, M.E., Cara, J.: Energy valorisation of crude glycerol and corn straw by means of slow co-pyrolysis: production and characterisation of gas, char and bio-oil. Fuel 112, 31–37 (2013)

    Article  Google Scholar 

  67. Skoulou, V., Manara, P., Zabaniotou, A.: H2 enriched fuels from co-pyrolysis of crude glycerol with biomass. J. Anal. Appl. Pyrol. 97, 198–204 (2012)

    Article  Google Scholar 

  68. Skoulou, V., Zabaniotou, A.: Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. J. Anal. Appl. Pyrol. 99, 110–116 (2013)

    Article  Google Scholar 

  69. Sricharoenchaikul, V., Atong, D.: Fuel gas generation from thermochemical conversion of crude glycerol mixed with biomass wastes. Energy Procedia 14, 1286–1291 (2012)

    Article  Google Scholar 

  70. Wei, L., Pordesimo, L.O., Haryanto, A., Wooten, J.: Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier. Bioresour. Technol. 102(10), 6266–6272 (2011)

    Article  Google Scholar 

  71. Chen, G., Zhao, L.: Preliminary investigation on hydrogen-rich gas production by co-steam-reforming of biomass and crude glycerin. Int. J. Hydrog. Energy 37, 765–773 (2012)

    Article  Google Scholar 

  72. Biodiesel Chains Report, National Report on Biodiesel use in Greece. National Report—Greece, EIE-05-113 CRES, 2009

  73. Perry, R.H., Green, D.W.: Perry’s chemical engineers’ handbook, pp. 2–39. McGraw-Hill, New York (1997)

    Google Scholar 

  74. Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J.C., Vasconcelos, I., Soucaille, P.: Metabolic engineering of clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol. Metab. Eng. 7, 329–336 (2005)

    Article  Google Scholar 

  75. Mu, Y., Teng, H., Zhang, D.J., Wang, W., Xiu, Z.L.: Microbial production of 1, 3-propanediol by klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28, 1755–1759 (2006)

    Article  Google Scholar 

  76. Glycerol safety material data sheet, by Caledon laboratory chemicals

  77. EC- European Commission, Reference document on Best available techniques for the waste treatment industries, Aug 2006

  78. Zabaniotou, A., Damartzis, Th: Modelling the intra-particle transport phenomena and chemical reactions of olive kernel fast pyrolysis. J. Anal. Appl. Pyrol. 80(1), 187–194 (2007)

    Article  Google Scholar 

  79. McCoy, M.: An unlikely impact. Chem. Eng. News 83(8), 19–20 (2005)

    Article  Google Scholar 

  80. Haas, M.J., McAloon, A.J., Yee, W.C., Foglia, T.A.: A process model to estimate biodiesel production costs. Bioresour. Technol. 97, 671–678 (2006)

    Article  Google Scholar 

  81. Refaat, A.A.: Different techniques for the production of biodiesel from waste. Int. J. Environ. Sci. Technol. 7(1), 183–213 (2010)

    Article  Google Scholar 

  82. Suso, A.: Experimental screening on the hydrogenolysis of crude glycerol mixture and techno-economic scaled—up evaluation towards propylene—glycol production. Diploma thesis under scientific supervision of Dr Ipsakis, D. and Prof Lemonidou, A., Aristotle University of Thessaloniki, Thessaloniki (2015)

  83. Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D.: Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103, 11206–11210 (2006)

    Article  Google Scholar 

  84. RAE- Greek Regulatory Authority for Energy. http://www.rae.gr//

  85. Katsivelis, P.S.: Energy in Greece. Basic informations and figures. Power imbalances-alternatives for the energy sector in Greece and its European and global context. In: Public conference in Athens, 10–12 Oct 2013

  86. National Emmission Trade System for the period 2008–2012, Ministry of Environment and Public Works (2006)

  87. Jacobsen, N.B.: Industrial symbiosis in Kalundborg, Denmark—A quantitative assessment of economic and environmental aspects. J. Ind. Ecol. 10(1–2), 239–255 (2006)

    Google Scholar 

  88. Sterr, T., Ott, T.: The industrial region as a promising unit for eco-industrial development—reflections, practical experience and establishment of innovative instruments to support industrial ecology. J. Clean. Prod. 12, 947–965 (2004)

    Article  Google Scholar 

  89. Frondel, M., Horbach, J., Rennings, K.: End-of-pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries. Discussion paper No. 04-82. ZEW, Centre for European Economic Research. ftp://ftp.zew.de/pub/zew-docs/dp/dp0482.pdf

  90. Guler, B., Ugursal, V.I., Fung, A.S., Aydinalp, M.: Technoeconomic evaluation of energy efficiency upgrade retrofits on the energy consumption and greenhouse gas emissions in the canadian housing stock. Int. J. Environ. Technol. Manag. 9(4), 434–444 (2008)

    Article  Google Scholar 

  91. EPA—United States Environmental Protection Agency, Climate Leaders greenhouse gas inventory protocol core module guidance. Direct emissions from stationary combustion sources, EPA430-K-08-003. www.epa.gov/climateleaders. Accessed 15 Dec 2014

  92. Intergovernmental Panel on Climate Change (IPCC). National greenhouse gas inventory, 1997. http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. Accessed 15 Dec 2014

  93. EPA, U.S. Environmental Protection Agency, Toxicological Review of Acrolein, CAS No.107-02-8, EPA/635/R-03/003; 2003

  94. Steinmetz, S., Herrington, J., Winterrowd, C., Roberts, W., Wendt, J., Linak, W.: Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions. Proc. Combust. Inst. 34(2), 2749–2757 (2013)

    Article  Google Scholar 

  95. Carson, P., Mumford, C.: Hazardous chemicals handbook, 2nd edn. London, Butterworth Heinneman (2002)

    Google Scholar 

  96. Ayoub, M., Abdullah, A.Z.: Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 16, 2671–2686 (2012)

    Article  Google Scholar 

  97. OECD SIDS Initial Assessment Report, Glycerol Cas No. 56-81-5, París; 2002. http://www.inchem.org/documents/sids/sids/56815.pdf. Accessed 15 Dec 2014

  98. Dharmadi, Y., Murarka, A., Gonzalez, R.: Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol. Bioeng. 94, 821–829 (2006)

    Article  Google Scholar 

  99. Morrison, L.R.: Glycerol. In: Kroschwitz, J., Howe-Grant, M. (eds.) Kirk-Othmer Encyclopedia of chemical technology, pp. 921–932. Wiley, New York (1994)

  100. You, Y.D., Shie, J.L., Chang, C.Y., Huang, S.H., Pai, C.Y., Yu, Y.H., Chang, C.H.: Economic cost analysis of biodiesel production: case in soybean oil. Energy Fuel 22, 182–189 (2008)

    Article  Google Scholar 

  101. Hazimah, A.H., Ooi, T.L., Salmiah, A.: Recovery of glycerol and diglycerol from glycerol pitch. J. Oil Palm Res. 15, 1–5 (2003)

    Google Scholar 

  102. Ardi, M.S., Aroua, M.K., Hashim, N.A.: Progress, prospect and challenges in glycerol purification process: a review. Renew. Sustain. Energy Rev. 42, 1164–1173 (2015)

    Article  Google Scholar 

  103. Singhabhandhu, A., Tezuka, T.: A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 35, 2493–2504 (2010)

    Article  Google Scholar 

  104. Skrzyńska, E., Wondołowska-Grabowska, A., Capron, M., Dumeignil, F.: Crude glycerol as a raw material for the liquid phase oxidation reaction. Appl. Catal. A Gen. 482, 245–257 (2014)

    Article  Google Scholar 

  105. Mohtar, Y., Tang, T.S., Salmiah, A.: Quality of basic oleochemicals produced in Malaysia. Informatics 12, 529–536 (2001)

    Google Scholar 

  106. Zhou, C., Beltramini, J.N., Fan, Y., Lu, G.Q.: Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 37(3), 527–549 (2008)

    Article  Google Scholar 

  107. Fan, X., Burton, R., Zhou, Y.: Glycerol (By product of Biodiesel production) as source for fuels and chemicals—min review. Open Fuels Energy Sci. J. 3, 17–22 (2010)

    Article  Google Scholar 

  108. Gallezot, P.: Selective oxidation with air on metal catalysts. Catal. Today 37, 405–418 (1997)

    Article  Google Scholar 

  109. Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl. Catal. A Gen. 133, 179–184 (1995)

    Article  Google Scholar 

  110. Ciriminna, R., Palmisano, G., Pina, C.D., Rossi, M., Pagliaro, M.: One-potelectro- catalytic oxidation of glycerol to DHA. Tetrahedron Lett. 47, 6993 (2006)

    Article  Google Scholar 

  111. Pyle, D.J., Garcia, R.A., Wen, Z.: Producing docosahexaenoicacid (DHA)-rich algae from biodiesel-derived crude glycerol: effect of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 56, 3933–3939 (2008)

    Article  Google Scholar 

  112. Kimura, H.: Oxidation assisted new reaction of glycerol. Polym. Adv. Technol. 12, 697–710 (2001)

    Article  Google Scholar 

  113. Besson, M., Gallezot, P.: Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 57, 127–141 (2000)

    Article  Google Scholar 

  114. Baumann, H., Bühler, M., Fochem, H., Hirsinger, F., Zoebelein, H., Falbe, J.: Natural fats and oils—renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. Engl. 27(1), 41–62 (1988)

    Article  Google Scholar 

  115. Vieville, C., Yoo, J.W., Pelet, S., Mouloungui, Z.: Synthesis of glycerol carbonate by direct carbonatetion of glycerol in supercritical CO2 in the presenceof zeolites and ion exchange resins. Catal. Lett. 56, 245–247 (1998)

    Article  Google Scholar 

  116. Dibenedetto, A., Pastore, C., Aresta, M.: Direct carboxylation of alcohols to organic carbonates: comparison of the group 5 element alkoxides catalytic activity an insight into the reaction mechanism and its key steps. Catal. Today 115, 88–94 (2006)

    Article  Google Scholar 

  117. Aresta, M., Dibenedetto, A., Nocito, F., Pastore, C.: A study on the carboxylation of glycerol to glycerol carbonate with carbondioxide: the role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A Chem. 257, 149–153 (2006)

    Article  Google Scholar 

  118. Clacens, J.M., Pouilloux, Y., Barrault, J.: Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl. Catal. A Gen. 227, 181–190 (2002)

    Article  Google Scholar 

  119. Kunieda, H., Akahane, A., Feng, J., Ishitobi, M.: Phase behavior of polyglycerol didodecanoates in water. J. Colloid Interface Sci. 245, 365–370 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge co-funding of this research by European Union- European Regional Development Fund and Greek Ministry of Εducation/EYDE-ETAK through program ESPA 2007-2013/EPAN II/Action “SYNERGASIA” (Project 1165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zabaniotou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manara, P., Zabaniotou, A. Co-valorization of Crude Glycerol Waste Streams with Conventional and/or Renewable Fuels for Power Generation and Industrial Symbiosis Perspectives. Waste Biomass Valor 7, 135–150 (2016). https://doi.org/10.1007/s12649-015-9439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9439-3

Keywords

Navigation