Skip to main content
Log in

High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The electrochemical behavior of the prepared solid state supercapacitors based on the composites of polyaniline (PANI) with multiwalled carbon nanotubes (MWCNTs) have been reported in this study. The PANI/MWCNTs composites are prepared by simple chemical oxidation polymerization method with different doping concentrations (2, 4, 6 and 8 wt%) of MWCNTs. X-ray diffraction studies performed on the pristine and composite samples reveal the semi-crystalline nature of PANI, with three well visualized reflections at 2θ values of 16, 22 and 25o, corresponding to the hkl planes (011), (020) and (200) respectively, of PANI. The absence of crystalline peaks of MWCNTs in the composites reveal the complete wrapping of PANI chains over the MWCNTs. Field emission scanning electron microscopy studies reveal the agglomerated structural form of the prepared samples. Raman spectroscopic studies confirm the growth of PANI and its composites with MWCNTs, consisting of all the characteristic bands of PANI. The electrochemical activity of the prepared supercapacitor is recorded through cyclic voltammetry. The prepared supercapacitor with 8 wt% doping concentration of MWCNTs, has significantly high values of 446.89 F/g, 248.29 Wh/kg and 16,865.12 W/kg for the specific capacitance, energy density and power density, respectively. The high values of these parameters for the supercapacitor with 8 wt% doping concentration of MWCNTs can be attributed to the high electrical conductivity, low internal resistance and inherent porous nature of MWCNTs. The PANI-MWCNTs composites have more stability with capacitance retention of 83.97% for PANI/MWCNTs composite (8 wt%), whereas, pristine PANI exhibits only 64.12% of the original capacitance after 10,000 cycles and the stability increases with the increase in doping concentration of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang GW, Xu CL, Li HL (2008) Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 48:6537–6539

    Google Scholar 

  2. Wang YG, Li HQ, Xia YY (2006) Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    CAS  Google Scholar 

  3. Zuo WH, Xie CY, Xu P, Li YY, Liu JP (2017) A novel phase transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv Mater 29:1703463

    Google Scholar 

  4. Wang MQ, Li ZQ, Wang CX, Zhao RZ, Li CX, Guo DX (2017) Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv Funct Mater 27:1701014

    Google Scholar 

  5. Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G (2018) High performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J Mater Chem A 6:4432–4442

    CAS  Google Scholar 

  6. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    CAS  PubMed  Google Scholar 

  7. Poy SY, Bashir S, Omar FS, Saidi NM, Farhana NK, Sundararajan V, Ramesh K, Ramesh S (2020) Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) based gel polymer electrolytes for electric double layer capacitors (EDLC). J Polym Res 27:50

    CAS  Google Scholar 

  8. Morimoto T, Hiratsuka K, Sanada Y (1995) Development and current status of electric double-layer capacitors. MRS Proc 393:397–411

    CAS  Google Scholar 

  9. Chen W, Rakhi RB, Alshareef HN (2013) Morphology-dependent enhancement of the Pseudocapacitance of template-guided tunable Polyaniline nanostructures. J Phys Chem C 117:15009–15019

    CAS  Google Scholar 

  10. Jiang Q, Shang Y, Sun Y, Yang Y, Hou S, Zhang Y, Cao A (2019) Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers. Dia Relat Mater 92:198–207

    CAS  Google Scholar 

  11. Ansari MO, Alshahrie A, Ansari SA (2019) Facile route to porous polyaniline@nanodiamond-graphene based nanohybrid structures for DC electrical conductivity retention and supercapacitor applications. J Polym Res 26:76

    Google Scholar 

  12. Xiong X, Huo P, Xie H (2019) Fabrication of Ni3S2@polypyrrole core-shell nanorod arrays on nickel foam as supercapacitor device. J Polym Res 26:209

    CAS  Google Scholar 

  13. Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17(16):3083–3087

    CAS  Google Scholar 

  14. Sekar P, Anothumakkool B, Kurungot S (2015) 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS Appl Mater Interfaces 7:7661–7669

    CAS  PubMed  Google Scholar 

  15. Hsu YH, Lai CC, Ho CL, Lo CT (2014) Preparation of interconnected carbon nanofibers as electrodes for supercapacitors. Electrochim Acta 127:369–376

    CAS  Google Scholar 

  16. Ning P, Duan X, Ju X, Lin X, Tong X, Pan X, Wang T, Li Q (2016) Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors. Electrochim Acta 210:754–761

    CAS  Google Scholar 

  17. Niu L, Wang J, Hong W, Sun J, Fan Z, Ye X, Wang H, Yang S (2014) Solvothermal synthesis of Ni/reduced graphene oxide composites as electrode material for supercapacitors. Electrochim Acta 123:560–568

    CAS  Google Scholar 

  18. Pol VG, Lee E, Zhou D, Dogan F, Calderon-Moreno JM, Johnson CS (2014) Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim Acta 127:61–67

    CAS  Google Scholar 

  19. Kausar A, Meer S, Iqbal T (2016) Structure, morphology, thermal, and electro-magnetic shielding properties of polystyrene microsphere/polyaniline/multi-walled carbon nanotube nanocomposite. J Plast Film Sheet 33:262–289

    Google Scholar 

  20. Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Kathyayini N (2018) Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25:123

    Google Scholar 

  21. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped Polyaniline. Polym Int 42:380–344

    CAS  Google Scholar 

  22. Reddy KR, Sin BC, Ryu KS, Noh J, Lee Y (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159:1934–1939

    CAS  Google Scholar 

  23. Pant HC, Patra MK, Negi SC, Bhatia A, Vadera SR, Kumar N (2006) Studies on conductivity and dielectric properties of polyaniline-zinc sulphide composites. Bull Mater Sci 29:379–384

    CAS  Google Scholar 

  24. Pouget JP, Hsu CH, MacDiarmid AG, Epstein AJ (1995) Structural investigation of metallic PAN-CSA and some of its derivatives. Synth Met 69:119–120

    CAS  Google Scholar 

  25. Dong B, He BL, Xu CL, Li HL (2007) Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143:7–13

    CAS  Google Scholar 

  26. Mažeikienė R, Niaura G, Malinauskas A (2018) Raman spectroelectrochemical study of electrode processes at hybrid polyaniline-copper hexacyanoferrate modified electrode. J Electroanal Chem 808:228–235

    Google Scholar 

  27. Jain M, Annapoorni S (2010) Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synth Met 160:1727–1732

    CAS  Google Scholar 

  28. Gautam M, Jayatissa AH (2012) Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J Appl Phys 112:114326

    Google Scholar 

  29. Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2005) Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization: effect of acids. Euro Pol J 41:2575–2583

    CAS  Google Scholar 

  30. Pal R, Goyal SL, Gupta V, Rawal I (2019) MnO2-magnetic Core-Shell structured Polyaniline dependent enhanced EMI shielding effectiveness: a study of VRH conduction. ChemistrySelect 4:9194–9210

    CAS  Google Scholar 

  31. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    CAS  Google Scholar 

  32. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    CAS  Google Scholar 

  33. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    CAS  Google Scholar 

  34. Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41:620–627

    CAS  Google Scholar 

  35. Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112:127–231

    CAS  Google Scholar 

  36. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun 10:1056–1059

    CAS  Google Scholar 

  37. Zhou Y, He B, Zhou W, Huang J, Li X, Wu B, Li H (2004) Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim Acta 49:257–262

    CAS  Google Scholar 

  38. Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sources 157:616–620

    CAS  Google Scholar 

  39. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. J Phys Chem C 115:23584–23590

    CAS  Google Scholar 

  40. Mondal SK, Barai K, Munichandraiah N (2007) High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim Acta 52:3258–3264

    CAS  Google Scholar 

  41. Prasad KR, Munichandraiah N (2002) Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes. J Power Sources 112:443–451

    CAS  Google Scholar 

  42. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors-influence of triton X-100. J Power Sources 159:1519–1526

    CAS  Google Scholar 

  43. Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline/activated carbon nanocomposite for supercapacitor application. J Polym Res 23:147

    Google Scholar 

  44. Wang Z, Qiang H, Zhang C, Zhu Z, Chen M, Chen C, Zhang D (2018) Facile fabrication of hollow polyaniline spheres and its application in supercapacitor. J Polym Res 25:129

    Google Scholar 

  45. Xiong S, Zhang X, Wang R, Lu Y, Li H, Liu J, Li S, Qiu Z, Wu B, Chu J, Wang X, Zhang R, Gong M, Chen Z (2019) Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 26:90

    Google Scholar 

  46. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state Paperlike polymer Supercapacitors. Nano Lett 10:4025–4031

    CAS  PubMed  Google Scholar 

  47. Zeng S, Chen H, Cai F, Kang Y, Chen M, Li Q (2015) Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J Mater Chem A 3:23864–23870

    CAS  Google Scholar 

  48. Nagaraj R, Kanakaraj A, Manohar HM, Nidhi MR, Mondal D, Kotrappanavar NS, Ghosh D (2019) Boosting the electrochemical performance of polyaniline based all-solid-state flexible supercapacitor using NiFe2O4 as adjuvant. J Electroanal Chem 851:113482

    CAS  Google Scholar 

  49. Hu C, Zhang X, Liu B, Chen S, Liu X, Liu Y, Liu J, Chen J (2020) Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage. Electrochim Acta 338:135846

    CAS  Google Scholar 

  50. Grover S, Goel S, Marichi RB, Sahu V, Singh G, Sharma RK (2016) Polyaniline all solid-state Pseudocapacitor: role of morphological variations in performance evolution. Electrochim Acta 196:131–139

    CAS  Google Scholar 

  51. Liu JH, Xu XY, Lu W, Xiong X, Ouyang X, Zhao C, Wang F, Qin SY, Hong JL, Tang JN, Chen DZ (2018) A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim Acta 283:366–373

    CAS  Google Scholar 

  52. Sun H, Li S, Shen Y, Miao F, Zhang P, Shao G (2019) Integrated structural design of polyaniline-modified nitrogen-doped hierarchical porous carbon nanofibers as binder-free electrodes toward all-solid-state flexible Supercapacitors. Appl Surf Sci 501:144001

    Google Scholar 

  53. Luo H, Lu H, Qiu J (2018) Carbon fibers surface-grown with helical carbon nanotubes and polyaniline for high-performance electrode materials and flexible supercapacitors. J Electroanal Chem 828:24–32

    CAS  Google Scholar 

  54. Che B, Li H, Zhou D, Zhang Y, Zeng Z, Zhao C, He C, Liu E, Lu X (2019) Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Compos Part B: Eng 165:671–678

    CAS  Google Scholar 

  55. Wang B, Zhao J, Zhang D, Zhang H, Cheng K, Ye K, Zhu K, Yan J, Cao D, Jiao W, Liu Y, Wang G (2019) Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high-performance supercapacitors. Appl Surf Sci 474:147–153

    CAS  Google Scholar 

  56. Chen Q, Xue K, Shen W, Tao F, Yin S, Xu W (2004) Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochim Acta 49:4157–4161

    CAS  Google Scholar 

  57. Potphode DD, Sinha L, Shirage PM (2019) Redox additive enhanced capacitance: multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage. Appl Surf Sci 469:162–172

    CAS  Google Scholar 

  58. Ramirez FCR, Ramakrishnan P, Payag ZPF, Shanmugam S, Binag CA (2017) Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. Synth Met 230:65–72

    CAS  Google Scholar 

  59. Li D, Li Y, Feng Y, Hu W, Feng W (2015) Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J Mater Chem A 3:2135–2143

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial assistance from DST-FIST for providing XRD facility and we also acknowledge the UGC-CSR Indore to provide FESEM and Raman Spectroscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh Lata Goyal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R., Goyal, S.L. & Rawal, I. High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes. J Polym Res 27, 179 (2020). https://doi.org/10.1007/s10965-020-02144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02144-y

Keywords

Navigation