Skip to main content
Log in

Effects of the ionic masses and positron density on the damped behavior in nonthermal collisional plasmas

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Wave characteristics of solitons with damped structures in a four-component plasma fluid having positive and negative ions, nonthermal distributed positrons and electrons have been studied. The damped Kadomtsev–Petviashvili (DKP) equation has been obtained in a small amplitude limit. The nonlinear criticality of DKP is examined for related Earth’s ionosphere plasma parameters. The effects of the positron density ratio, the ionic mass ratio, the electron density ratio, the index of non-thermality and frequency parameters of collisions on the formation of both damped structures of compressive and rarefactive types are studied. It is a value mention that the results performed in this work may be used in the plasma of (D–F) Earth’s ionosphere regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S I Popel, A P Golub’ and T V Losseva Phys. Rev. E 67 056402 (2003)

    Article  ADS  Google Scholar 

  2. S Ghosh J. Plasma Phys. 71 519 (2005)

    Article  ADS  Google Scholar 

  3. S Sultana and I Kourakis Phys. Plasmas 22 102302 (2015)

    Article  ADS  Google Scholar 

  4. E K El-Shewy, A A El-Rahman and S K Zaghbeer J. Exp. Phys. 127 761 (2018)

    ADS  Google Scholar 

  5. Y Wang, X Guo, Y Lu, X Wang Phys. Lett. A 380 215 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. P Chatterjee, R Ali and A Saha Zeitschrift fur Naturforschung a 73 2 (2018)

    Google Scholar 

  7. M Horanyi Annu. Rev. Astron. Astrophys. 34 383 (1996)

    Article  ADS  Google Scholar 

  8. Y Nakamura, T Odagiri and I Tsukabayashi Plasma Phys. Control. Fusion 39 105 (1997)

    Article  ADS  Google Scholar 

  9. S I Popel, V N Tsytovich and M Y Yu Astrophys. Space Sci. 256 107 (1998)

    Article  ADS  Google Scholar 

  10. S Moolla, R Bharuthram and S Baboolal Phys. Plasmas 12 042310 (2005)

    Article  ADS  Google Scholar 

  11. R A Tang and J K Xue Phys. Plasmas 9 3800 (2003)

    Article  ADS  Google Scholar 

  12. T S Gill, N S Saini and H Kaur Chaos Solitons Fractals 28 1106 (2006)

    Article  ADS  Google Scholar 

  13. W M Moslem Phys. Plasmas 10 3168 (2003)

    Article  ADS  Google Scholar 

  14. J Vranjes, D Petrovic, B P Pandey and S Poedts Phys. Plasmas 15 072104 (2008)

    Article  ADS  Google Scholar 

  15. T V Losseva, S I Popel, A P Golub’, Yu N Izvekova and P K Shukla Phys. Plasmas 19 013703 (2012)

    Article  ADS  Google Scholar 

  16. S K El-Labany, E K El-Shewy, H N Abd El-Razek and A A El-Rahman Commun. Theor. Phys. 70 325 (2018)

    Article  ADS  Google Scholar 

  17. S K El-Labany, W M Moslem and A E Mowafy Phys. Plasmas 10 4217 (2003)

    Article  ADS  Google Scholar 

  18. A M El-Hanbaly, M Sallah, E K El-Shewy and H F Darweesh J. Exp. Theor. Phys. 121 669 (2015)

    Article  ADS  Google Scholar 

  19. S K Zaghbeer, H H Salah, N H Sheta, E K El-Shewy and A Elgarayh Astrophys. Space Sci. 353 493 (2014)

    Article  ADS  Google Scholar 

  20. B Sahu, A Sinha and R Roychoudhury Phys. Plasmas 24 112111 (2017)

    Article  ADS  Google Scholar 

  21. B Sahu Phys. A 509 162 (2018)

    Article  MathSciNet  Google Scholar 

  22. J Tamang, K Sarkar and A Saha Phys. A 505 18 (2018)

    Article  MathSciNet  Google Scholar 

  23. J Jacquinot, B D McVey and J E Scharer Phys. Rev. Lett. 39 88 (1977)

    Article  ADS  Google Scholar 

  24. G S Lakhina and F Verheest Astrophys. Space Sci. 253 97 (1997)

    Article  ADS  Google Scholar 

  25. W Oohara and R Hatakeyama Phys. Rev. Lett. 95 175003 (2005)

    Article  ADS  Google Scholar 

  26. W Oohara and R Hatakeyama Phys. Plasmas 14 055704 (2007)

    Article  ADS  Google Scholar 

  27. S A Elwakil, E K El-Shewy and H G Abdelwahed Phys. Plasmas 17 052301 (2010)

    Article  ADS  Google Scholar 

  28. S K El-Labany, W M Moslem, N A El-Bedwehy, R Sabry and H N A El-Razek Astrophys. Space Sci. 338 3 (2012)

    Article  ADS  Google Scholar 

  29. H Saleem Phys. Plasmas 14 014505 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. R Sabry, W M Moslem, P K Shukla Phys. Plasmas 16 032302 (2009)

    Article  ADS  Google Scholar 

  31. G Sreekalaa, M Manesh, T W Neethu, V Anu, S Sijo and C Venugopal Plasma Phys. Rep. 44 102 (2018)

    Article  ADS  Google Scholar 

  32. M Manesh, S Sijo, V Anu, G Sreekala, T W Neethu, D E Savithri and C Venugopal Phys. Plasmas 24 062905 (2017)

    Article  ADS  Google Scholar 

  33. H G Abdelwahed, E K El-shewy, M A Zahran and S A Elwakil Phys. Plasmas 23 022102 (2016)

    Article  ADS  Google Scholar 

  34. E Tandberg-Hansen and A G Emslie The Physics of Solar Flares (Cambridge: Cambridge University Press) (1988)

    Google Scholar 

  35. S I Popel, S V Vladimirov and P K Shukla Phys. Plasmas 2 716 (1995)

    Article  ADS  Google Scholar 

  36. K Roy, A P Misra and P Chatterjee Phys. Plasmas 15 032310 (2008)

    Article  ADS  Google Scholar 

  37. P A Markowich, C A Ringhofer and C Schmeiser Semiconductor Equations (Vienna: Springer) (1990)

    Book  MATH  Google Scholar 

  38. Y D Jung Phys. Plasmas 8 3842 (2001)

    Article  ADS  Google Scholar 

  39. F Haas, G Manfredi and J Goedert Phys. Rev. E 64 026413 (2001)

    Article  ADS  Google Scholar 

  40. B Shokri and A A Rukhadze Phys. Plasmas 6 3450 (1999)

    Article  ADS  Google Scholar 

  41. A P Misra and A Roy Chowdhury Phys. Plasmas 13 072305 (2006)

    Article  ADS  Google Scholar 

  42. J Tamang and A Saha Z. Naturforsch. 74 6 (2019)

    Google Scholar 

  43. N A Chowdhury, A Mannan, M M Hasan and A A Mamun CHAOS 27 093105 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. M Ferdousi, S Sultana and A A Mamun Phys. Plasmas 22 032117 (2015)

    Article  ADS  Google Scholar 

  45. M G Shaha, M M Rahmanb, M R Hossenc and A A Mamund Plasma Phys. Rep. 44 861 ( 2018)

    Article  ADS  Google Scholar 

  46. M M Hatami, M Tribeche, A A Mamun Astrophys Space Sci. 364 21 (2019)

    Article  ADS  Google Scholar 

  47. J Tamang and A Saha Waves in Random and Complex Media 29 (2019)

  48. E K El-Shewy and A A El-Rahman Phys. Scr. 93 115202 (2018)

    Article  ADS  Google Scholar 

  49. Y Nakamura and I Tsukabayashi Phys. Rev. Lett. 52 2356 (1984)

    Article  ADS  Google Scholar 

  50. M L Burns, A K Hardling and R Ramaty Positron–Electron Pairs in Astrophysics (New York: American Institute of Physics) (1983)

  51. M C Kelley The Earth’s Ionosphere Plasma Physics and Electrodynamics (London: Academic Press) (2009)

Download references

Acknowledgements

This project was supported by the deanship of scientific research at Prince Sattam Bin Abdulaziz University under the research project No. 10259/01/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Abdelwahed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwahed, H.G., El-Hanbaly, A.M., Sabry, R. et al. Effects of the ionic masses and positron density on the damped behavior in nonthermal collisional plasmas. Indian J Phys 95, 1909–1915 (2021). https://doi.org/10.1007/s12648-020-01831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01831-2

Keywords

PACS Nos.

Navigation