Skip to main content
Log in

Dynamics of nonlinear ion-acoustic waves in Venus’ lower ionosphere

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Dynamics of nonlinear ion-acoustic waves (IAWs) are studied for Venus’ lower atmosphere at an altitude of \(200-1000\) km. Two-soliton, nonlinear solitary and periodic waves in a three-component plasma consisting of \(H^{+}\) and \(O^{+}\) ions with kappa distributed electrons are studied. Using the reductive perturbation technique (RPT), the Korteweg-de Vries (KdV) equation is derived and a Planar dynamical system is formed for the KdV equation using a travelling wave transformation. A phase portrait is drawn to analyze nonlinear wave behaviors by adjusting the parameters \(\kappa \) (spectral index), \(\gamma \) (unperturbed number density ratio), and \(V\) (travelling wave speed). Increasing values of \(\kappa \) amplify amplitudes for solitary and periodic waves, narrow down the width of the solitary wave, and broaden the width of the periodic wave. Increasing value of \(\gamma \) boosts amplitude of the solitary wave with unchanged width, while amplitude of the nonlinear periodic wave decreases and width widens. Increasing value of \(V\) enhances amplitudes and reduces widths for both solitary and periodic waves. Two-soliton solutions for the KdV equation are studied using the Hirota direct method. Increasing value of \(\gamma \) reduces amplitude of the soliton without affecting the width and increasing value of \(\kappa \) reduces width of the soliton. Phase shift for two-soliton is also shown and found that for different values of \(\kappa \), the phase shift increases on increasing value of \(\gamma \). The findings of our result aid in understanding the dynamics of nonlinear waves and two-soliton solutions in Venus’ lower ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Acknowledgements

Kusum Chettri is thankful to Sikkim Manipal Institute of Technology (SMIT) and Sikkim Manipal University (SMU) for providing research fellowship under TMA Pai University Research Fund (Ref. No. SMU/DOR/2023-59).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the manuscript.

Corresponding author

Correspondence to Asit Saha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chettri, K., Tamang, J., Chatterjee, P. et al. Dynamics of nonlinear ion-acoustic waves in Venus’ lower ionosphere. Astrophys Space Sci 369, 44 (2024). https://doi.org/10.1007/s10509-024-04295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04295-6

Keywords

Navigation