Skip to main content
Log in

Numerical exploration of electromagnetic electron whistler-cyclotron instability in Vasyliunas–Cairns distributed non-thermal plasmas: A kinetic theory approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A natural compression/expansion in the extended plasma systems generates the temperature anisotropy in the particle distribution. Such a kinetic anisotropy acts as source of free energies to instigate the generation of a variety of instabilities. These microinstabilities in turn are extensively involved in the enhancement of electromagnetic fluctuations and scatter the particles to reach the quasistable states, with relatively lower anisotropies. One of them is the instability associated with right hand circularly polarized electromagnetic electron whistler-cyclotron mode which significantly contributes to checking/defining the perpendicular electron temperature in large scale extended space plasmas. Its transverse dielectric response function in hybrid non-thermal Vasyliunas–Cairns distributed plasmas (which simultaneously incorporates the characteristics of both type of non-thermalities, i.e., \(\alpha \) and \(\kappa \)) is calculated by using the well-known dispersion relation presented by Gary, 1993 [1]. The obtained dielectric response function is solved numerically to procure the real and imaginary frequencies of whistler instability. The impact of important physical parameters, i.e., non-thermality parameters \(\alpha \) and \( \kappa \) for different temperature anisotropy A and plasma beta \(\beta \) is studied on the numerically calculated real frequency and growth rate of whistler instability. Both the real and imaginary frequencies are found sensitive to the respective instability thresholds. It is also investigated that the real frequency and growth rate are remarkably supported by the hybrid non-thermality of \(\alpha \) and \(\kappa \). Contemporary analysis is highly pertinent to comprehend the various magnetized space plasma environments where mixed non-thermal distributions are in frequently existent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data underlying this article will be shared on reasonable request to the corresponding author. The manuscript has associated data in a data repository.

References

  1. S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, New York, 1993)

    Book  Google Scholar 

  2. M. Lazar, S. Poedts, R. Schlickeiser, Instability of the parallel electromagnetic modes in Kappa distributed plasmas – I. Electron whistler-cyclotron modes. Mon. Not. R. Astron. Soc., 410, 663-670 (2011). https://doi.org/10.1063/1.3532787

  3. C. Salem, D. Hubert, C. Lacombe, S.D. Bale, A. Mangeney, D.E. Larson, R.P. Lin, Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations. Astrophys. J. 585, 1147 (2003). https://doi.org/10.1086/346185

    Article  ADS  Google Scholar 

  4. P. Hellinger, P. Travnicek, J.C. Kasper, J.J. Lazarus, Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101 (2006). https://doi.org/10.1029/2006GL025925

    Article  ADS  Google Scholar 

  5. Š Štverák, P. Trávníček, M. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103 (2008). https://doi.org/10.1029/2007JA012733

    Article  ADS  Google Scholar 

  6. C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71(1), 1 (1966). https://doi.org/10.1029/JZ071i001p00001

    Article  ADS  Google Scholar 

  7. S.P. Gary, J. Wang, Whistler instability: Electron anisotropy upper bound. J. Geophys. Res. 101, 10749–10754 (1996). https://doi.org/10.1029/96JA00323

    Article  ADS  Google Scholar 

  8. X.H. Deng, H. Matsumoto, Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves. Nature 410, 557–560 (2001)

    Article  ADS  Google Scholar 

  9. R. Schlickeiser, M. Lazar, T. Skoda, Spontaneously growing, weakly propagating, transverse fluctuations in anisotropic magnetized thermal plasmas. Phys. Plasmas 18, 012103 (2011). https://doi.org/10.1063/1.3532787

    Article  ADS  Google Scholar 

  10. M. Lazar, S. Poedts, M.J. Michno, Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas. Astron. Astrophys. 554, A64 (2013)

    Article  ADS  Google Scholar 

  11. M. Lazar, S. Poedts, R. Schlickeiser, The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability. J. Geophys. Res. 119, 9395–9406 (2014). https://doi.org/10.1002/2014JA020668

    Article  Google Scholar 

  12. M. Lazar, S. Poedts, R. Schlickeiser, C. Dumitrache, Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas: Electromagnetic electron-cyclotron instability in the solar wind. Mon. Not. R. Astron. Soc. 446, 3022–3033 (2015). https://doi.org/10.1093/mnras/stu2312

    Article  ADS  Google Scholar 

  13. M. Lazar, S. Poedts, H. Fichtner, Destabilizing effects of the suprathermal populations in the solar wind. Astron. Astrophys. 582, A124 (2015). https://doi.org/10.1051/0004-6361/201526509

    Article  ADS  Google Scholar 

  14. M. Lazar, R.A. Lopez, S.M. Shaaban, S. Poedts, H. Fichtner, Whistler instability stimulated by the suprathermal electrons present in space plasmas. Astrophys. Space Sci. 364, 171 (2019). https://doi.org/10.1007/s10509-019-3661-6

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Lazar, R. A. L ópez, S. M. Shaaban, S. Poedts, P. H. Yoon, H. Fichtner, Temperature Anisotropy Instabilities Stimulated by the Solar Wind Suprathermal Populations. Front. Astron. Space Sci. 8:777559 (2022). https://doi.org/10.3389/fspas.2021.777559

  16. M. Sarfraz, S. Saeed, P.H. Yoon, G. Abbas, H.A. Shah, Macroscopic quasi-linear theory of electromagnetic electron cyclotron instability associated with core and halo solar wind electrons. J. Geophys. Res. Space Physics 121, 9356 (2016). https://doi.org/10.1002/2016JA022854

    Article  ADS  Google Scholar 

  17. P.H. Yoon, Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev. Mod. Plasma Phys. 1, 4 (2017). https://doi.org/10.1007/s41614-017-0006-1

    Article  ADS  Google Scholar 

  18. R.A. Helliwell, J.H. Crary, J.H. Pope, R.L. Smith, The “nose” whistler–A new high-latitude phenomenon. J. Geophys. Res. 61, 139–142 (1956). https://doi.org/10.1029/JZ061i001p00139

  19. R.L. Stenzel, Whistler waves in space and laboratory plasmas. J. Geophys. Res. 104(A7), 14379–14395 (1999). https://doi.org/10.1029/1998JA900120

    Article  ADS  Google Scholar 

  20. L.B. Wilson III., C.A. Cattell, P.J. Kellogg, K. Goetz, K. Kersten, J.C. Kasper, A. Szabo, K. Meziane, Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks. J. Geophys. Res. Space Physics 114(A10), 10106 (2009). https://doi.org/10.1029/2009JA014376

    Article  ADS  Google Scholar 

  21. P.J. Kellogg, C.A. Cattell, K. Goetz, S.J. Monson, L.B. Wilson III., Large amplitude whistlers in the magnetosphere observed with Wind-Waves. J. Geophys. Res. Space Physics 116(A9), 09224 (2011). https://doi.org/10.1029/2010JA015919

    Article  ADS  Google Scholar 

  22. R.L. Mace, Whistler instability enhanced by suprathermal electrons within the Earth’s foreshock. J. Geophys. Res. 103(A7), 14643–14654 (1998). https://doi.org/10.1029/98JA00616

    Article  ADS  Google Scholar 

  23. R.L. Mace, M.A. Hellberg, A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2, 2098 (1995). https://doi.org/10.1063/1.871296

    Article  ADS  Google Scholar 

  24. R. L. Mace, R. D. Sydora, Parallel whistler instability in a plasma with an anisotropic bi-kappa distribution. J. Geophys. Res., 115(A07206) (2010). https://doi.org/10.1029/2009JA015064

  25. L.R.O. Storey, An investigation of whistling atmospherics. Phil. Trans. R. Soc. A 246, 113–141 (1953). https://doi.org/10.1098/rsta.1953.0011

    Article  ADS  Google Scholar 

  26. F. Xiao, Z. Su, H. Zheng, S. Wang, Modeling of outer radiation belt electrons by multidimensional diffusion process. J. Geophys. Res., 114(A03201) (2009). https://doi.org/10.1029/2008JA013580

  27. D. Stansby, T.S. Horbury, C.H. Chen, L.K. Maitteini, Experimental determination of whistler wave dispersion relation in the solar wind. Astrophys. J. Lett. 829, L16 (2016). https://doi.org/10.3847/2041-8205/829/1/L16

    Article  ADS  Google Scholar 

  28. D. Pisal, A. H. Sulaiman, k. O. Santol, G. B. Hospodarsky, W. S. Kurth, D. A. Gurnett, First Observation of Lion Roar Emission in Saturn’s Magnetosheath. Geophys. Res. Lett., 45, 486-492 (2018). https://doi.org/10.1002/2017GL075919

  29. D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  30. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Springer, Switzerland, 2016)

  31. M. Sarfraz, P.H. Yoon, S. Saeed, G. Abbas, H.A. Shah, Macroscopic quasilinear theory of parallel electron firehose instability associated with solar wind electrons. Phys. Plasmas 24, 012907 (2017). https://doi.org/10.1063/1.4975007

    Article  ADS  Google Scholar 

  32. M. Sarfraz, A moment-based quasilinear theory for electron firehose instability driven by solar wind core/halo electrons: Electron Firehose Instability. J. Geophys. Res. 123, 6107 (2018). https://doi.org/10.1029/2018JA025449

    Article  Google Scholar 

  33. M. Aman-ur-Rehman, M.A. Ahmad, Shahzad, Revisiting some analytical and numerical interpretations of Cairns and Kappa-Cairns distribution functions. Phys. Plasmas 27, 100901 (2020). https://doi.org/10.1063/5.0018906

    Article  ADS  Google Scholar 

  34. M. Sarfraz, P.H. Yoon, Contributions of protons in electron firehose instability driven by solar wind core-halo electrons. Mon. Not. R. Astron. Soc. 486, 3550 (2019). https://doi.org/10.1093/mnras/stz1086

    Article  ADS  Google Scholar 

  35. M. Sarfraz, P.H. Yoon, Combined Whistler Heat Flux and Anisotropy Instabilities in Solar Wind. J. Geophys. Res. Space Physics 125, 1 (2020). https://doi.org/10.1029/2019JA027380

    Article  Google Scholar 

  36. P.H. Yoon, M. Sarfraz, Z. Ali, C.S. Salem, J. Seough, Proton cyclotron and mirror instabilities in marginally stable solar wind plasma. Mon. Not. R. Astron. Soc. 509, 4736–4744 (2022). https://doi.org/10.1093/mnras/stab3286

    Article  ADS  Google Scholar 

  37. D. Summers, R.M. Thorne, The modified plasma dispersion function. Phys. Fluids B 3, 1835 (1991). https://doi.org/10.1063/1.859653

    Article  ADS  Google Scholar 

  38. V. Pierrard, M. Lazar, Kappa distributions: Theory and applications in space plasmas. Solar Physics 267(1), 153–174 (2010). https://doi.org/10.1007/s11207-010-9640-2

    Article  ADS  Google Scholar 

  39. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, Electron velocity distributions near the Earth’s bow shock. J. Geophys. Res. 88, 96 (1983). https://doi.org/10.1029/JA088iA01p00096

    Article  ADS  Google Scholar 

  40. M. Maksimovic, V. Pierrard, P. Riley, Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 1151 (1997). https://doi.org/10.1029/97GL00992

    Article  ADS  Google Scholar 

  41. W.G. Pilipp, H. Miggenrieder, M.D. Montgomery, K.H. Muhlhauser, H. Rosenbauer, R. Schwenn, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment. J. Geophys. Res. 92, 1075 (1987). https://doi.org/10.1029/JA092iA02p01075

    Article  ADS  Google Scholar 

  42. I. Zouganelis, Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res. 113, A08111 (2008). https://doi.org/10.1029/2007JA012979

    Article  ADS  Google Scholar 

  43. M. A. Shahzad, Aman-ur-Rehman, S. Mahmood, M. Bilal, M. Sarfraz, Kinetic study of ion-acoustic waves in non-thermal Vasyliunas-Cairns distributed plasmas. Eur. Phys. J. Plus, 137, 236 (2022). https://doi.org/10.1140/epjp/s13360-022-02463-7

  44. V. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968). https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  45. S. Olbert, R. L. Carovillano, J. F. McClay, H. R. Radoski, Summary of experimental results from MIT detector on IMP-1, in Physics of the magnetosphere: Based upon the Proceedings of the Conference Held at Boston College June, edited by R. D. L. Carovillano and J. F. McClay. Springer, 19-28 (1968). https://doi.org/10.1007/978-94-010-3467-8_23

  46. R.M. Thorne, D. Summers, Landau damping in space plasmas. Phys. Fluids B 3, 2117 (1991). https://doi.org/10.1063/1.859624

    Article  ADS  Google Scholar 

  47. M.P. Leubner, A nonextensive entropy approach to Kappa-distributions. Astrophys. Space Sci. 282, 573 (2002). https://doi.org/10.1023/A:1020990413487

    Article  ADS  Google Scholar 

  48. G. Livadiotis, Introduction to special section on origins and properties of Kappa distributions: Statistical background and properties of Kappa distributions in space plasmas. J. Geophys. Res. 120, 1607 (2015). https://doi.org/10.1002/2014JA020825

    Article  Google Scholar 

  49. R.A. Cairns, R. Bingham, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, A.A. Mamun, Ion sound solitary waves with density depressions. J. Phys. 5, C6–C43 (1995). https://doi.org/10.1051/jp4:1995608

    Article  Google Scholar 

  50. R. Bostrom, Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756 (1992). https://doi.org/10.1109/27.199524

    Article  ADS  Google Scholar 

  51. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Hol-back, Freja multiprobe observations of electrostatic solitary structure. Geophys. Res. Lett. 21, 1827 (1994). https://doi.org/10.1029/94GL00886

    Article  ADS  Google Scholar 

  52. T.K. Baluku, M.A. Hellberg, Ion acoustic solitary waves in an electron-positron-ion plasma with non-thermal electrons. Plasma Phys. Controlled Fusion 53, 095007 (2011). https://doi.org/10.1088/0741-3335/53/9/095007

    Article  ADS  Google Scholar 

  53. A.A. Mamun, Rarefactive ion-acoustic electrostatic solitary structures in nonthermal plasmas. Eur. Phys. J. D 11, 143 (2000). https://doi.org/10.1007/s100530070115

    Article  ADS  Google Scholar 

  54. Aman-ur-Rehman, M. A. Shahzad, S. Mahmood, M. Bilal, Numerical and analytical study of electron plasma waves in nonthermal Vasyliunas–Cairns distributed plasmas. J. Geophys. Res. Space Physics, 126, e2021JA029626 (2021). https://doi.org/10.1029/2021JA029626

  55. M. Bilal, Aman-ur-Rehman, S. Mahmood, M. A. Shahzad, Effect of non-thermal and non-extensive parameters on electron plasma waves in hybrid Cairns–Tsallis distributed plasmas. Eur. Phys. J. Plus, 137, 788 (2022). https://doi.org/10.1140/epjp/s13360-022-03006-w

  56. M. Bilal, Aman-ur-Rehman, S. Mahmood, M. A. Shahzad, M. Sarfraz, Landau damping of ion-acoustic waves with simultaneous effects of non-extensivity and non-thermality in the presence of hybrid Cairns-Tsallis distributed electrons. Contrib. Plasma Phys., e202200102 (2022). https://doi.org/10.1002/ctpp.202200102

  57. M. Bilal, A. Rehman, S. Mahmood, M.A. Shahzad, M. Sarfraz, M. Ahmad, Kinetic theory of dust ion-acoustic waves in the presence of hybrid Cairns-Tsallis distributed electrons. Phys. Scr. 97, 125606 (2022). https://doi.org/10.1088/1402-4896/ac9ff5

    Article  ADS  Google Scholar 

  58. K. Aoutou, M. Tribeche, T.H. Zerguini, Electrostatic solitary structures in dusty plasmas with nonthermal and superthermal electrons. Phys. Plasmas 15, 013702 (2008). https://doi.org/10.1063/1.2828073

    Article  ADS  Google Scholar 

  59. S. Younsi, M. Tribeche, Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution. Phys. Plasmas 15, 073706 (2008). https://doi.org/10.1063/1.2952002

    Article  ADS  Google Scholar 

  60. A.A. Abid, M.Z. Khan, S.L. Yap, H. Tercas, S. Mahmood, Dust charging processes with a Cairns-Tsallis distribution function with negative ions. Phys. Plasmas 23, 013706 (2016). https://doi.org/10.1088/1361-6587/ab27ff

    Article  ADS  Google Scholar 

  61. D. Darian, S. Marholm, M. Mortensen, W.J. Miloch, Theory and simulations of spherical and cylindrical Langmuir probes in non-Maxwellian plasmas. Plasma Phys. Controlled Fusion 61, 085025 (2019). https://doi.org/10.1088/1361-6587/ab27ff

    Article  ADS  Google Scholar 

  62. W.F. El-Taibany, N.A. Zedan, R.M. Taha, Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons. Astrophys. Space Sci. 363, 129 (2018). https://doi.org/10.1007/s10509-018-3348-4

    Article  ADS  Google Scholar 

  63. D. Debnath, A. Bandyopadhyay, Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in a collisionless magnetized dusty plasma. Astrophys. Space Sci. 365, 72 (2020). https://doi.org/10.1007/s10509-020-03786-6

    Article  ADS  MathSciNet  Google Scholar 

  64. W.C. Feldman, S.J. Bame, S.P. Gary, J.T. Gosling, D. McComas, M.F. Thomsen, Electron Heating Within the Earth’s Bow Shock. Phys. Rev. Lett. 49, 199 (1982)

    Article  ADS  Google Scholar 

  65. D.A. Gurnett, L.A. Frank, R.P. Lepping, Plasma waves in the distant magnetotail. J. Geophys. Res. 81, 6059 (1976). https://doi.org/10.1029/JA081i034p06059

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shahzad.

Appendix: A

Appendix: A

This appendix section include the integrals (\(I_{1},I_{2},I_{3},I_{4},I_{5}\) and \(I_{6}\)) that appear in the Eq. (4) with their respective solutions.

$$\begin{aligned} I_{1}& =\frac{2}{\kappa v_{th_{\perp e}(VC)}^{2}}A_{VC}(-\kappa -1)\int _{-\infty }^{+\infty }dv_{\parallel }\frac{\left\{ 1+\frac{ kv_{\parallel }}{\omega }A\right\} }{\omega -kv_{\parallel }\pm \Omega _{c}}\int _{0}^{\infty }v_{\perp }^{3}dv_{\perp } \nonumber \\ & \qquad \times \left[ 1+\frac{v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -2} \end{aligned}$$
(22)
$$\begin{aligned} =\frac{1}{\pi \alpha _{0}}\left\{ \frac{A}{\omega }+\left( \frac{A}{\omega } \xi +\frac{1}{kv_{th_{\parallel e}(VC)}}\right) Z_{\kappa 1}(\xi )\right\} \end{aligned}$$
(23)
$$\begin{aligned} I_{2}&=\frac{2\alpha }{\kappa v_{th_{\perp e}(VC)}^{6}}A_{VC}(-\kappa -1)\int _{-\infty }^{+\infty }dv_{\parallel }\frac{\left\{ 1+\frac{ kv_{\parallel }}{\omega }A\right\} }{\omega -kv_{\parallel }\pm \Omega _{c}}\nonumber \\ & \quad \times \int _{0}^{\infty }v_{\perp }^{7}dv_{\perp }\left[ 1+\frac{ v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{ v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -2} \end{aligned}$$
(24)
$$\begin{aligned} & =2\alpha \frac{3\kappa ^{2}}{(\kappa -2)(\kappa -1)}\frac{1}{\pi \left[ 1+ \frac{15}{4}\alpha \frac{\kappa ^{2}}{(\kappa -\frac{5}{2})(\kappa -\frac{3}{ 2})}\right] } \nonumber \\ & \quad \quad \times \left\{ \frac{A}{\omega }\frac{(\kappa -2)(\kappa -1)}{(\kappa -\frac{ 5}{2})(\kappa -\frac{3}{2})}+\left( \frac{A}{\omega }\xi +\frac{1}{ kv_{th_{\parallel e}(VC)}}\right) Z_{\kappa 2}(\xi )\right\} \end{aligned}$$
(25)
$$\begin{aligned} I_{3}&=\frac{2\alpha }{\kappa v_{th_{\perp e}(VC)}^{2}v_{th_{\parallel e}(VC)}^{4}}A_{VC}(-\kappa -1)\int _{-\infty }^{+\infty }v_{\parallel }^{4}dv_{\parallel }\frac{\left\{ 1+\frac{kv_{\parallel }}{\omega } A\right\} }{\omega -kv_{\parallel }\pm \Omega _{c}}\nonumber \\ & \quad \times \int _{0}^{\infty }v_{\perp }^{3}dv_{\perp }\left[ 1+\frac{ v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{ v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -2} \end{aligned}$$
(26)
$$\begin{aligned} & =\alpha \frac{1}{(\pi )[1+\frac{15}{4}\alpha \frac{\kappa ^{2}}{(\kappa - \frac{5}{2})(\kappa -\frac{3}{2})}]}\frac{1}{kv_{th_{\parallel e}(VC)}} \nonumber \\ & \qquad \left\{ \frac{\xi }{2}\frac{\kappa }{(\kappa -\frac{3}{2})}+\xi ^{3}+kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\right. \nonumber \\ & \qquad \times \left( \frac{3}{4}\frac{\kappa ^{2}}{(\kappa -\frac{5}{2})(\kappa - \frac{3}{2})}+\xi ^{2}\frac{\kappa }{2}\frac{1}{(\kappa -\frac{3}{2})}+\xi ^{4}\right) \nonumber \\ & \qquad \left. +\left( 1+kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\xi \right) \xi ^{4}Z_{\kappa 1}(\xi )\right\} \end{aligned}$$
(27)
$$\begin{aligned} I_{4}& =\frac{4\alpha }{\kappa v_{th_{\perp e}(VC)}^{4}v_{th_{\parallel e}(VC)}^{2}}A_{VC}(-\kappa -1)\int _{-\infty }^{+\infty }v_{\parallel }^{2}dv_{\parallel }\frac{\left\{ 1+\frac{kv_{\parallel }}{\omega } A\right\} }{\omega -kv_{\parallel }\pm \Omega _{c}}\nonumber \\ & \quad \times \int _{0}^{\infty }v_{\perp }^{5}dv_{\perp }\left[ 1+\frac{ v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{ v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -2} \end{aligned}$$
(28)
$$\begin{aligned} & =4\alpha \frac{1}{(\pi )[1+\frac{15}{4}\alpha \frac{\kappa ^{2}}{(\kappa - \frac{5}{2})(\kappa -\frac{3}{2})}]}\frac{\kappa }{(\kappa -1)}\frac{1}{ kv_{th_{\parallel e}(VC)}} \nonumber \\ & \qquad \times \left\{ \xi \frac{(\kappa -1)}{(\kappa -\frac{3}{2})} +kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\right. \nonumber \\ &\quad \quad \times \left( \frac{\kappa (\kappa -1)}{2(\kappa -\frac{5}{2})(\kappa -\frac{ 3}{2})}+\xi ^{2}\frac{(\kappa -1)}{(\kappa -\frac{3}{2})}\right) \nonumber \\ & \qquad \left. + \,(kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\xi +1)\xi ^{2}Z_{\kappa 3}(\xi )\right\} \end{aligned}$$
(29)
$$\begin{aligned} I_{5}&=\frac{4\alpha }{v_{th_{\perp e}(VC)}^{4}}A_{VC}\int _{-\infty }^{+\infty }dv_{\parallel }\frac{\{1+\frac{kv_{\parallel }}{\omega }A\}}{ \omega -kv_{\parallel }\pm \Omega _{c}}\nonumber \\ & \quad \times \int _{0}^{\infty }v_{\perp }^{5}dv_{\perp }\left[ 1+\frac{ v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{ v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -1} \end{aligned}$$
(30)
$$\begin{aligned} I_{5} &=-4\alpha \frac{\kappa ^{2}}{(\kappa -1)(\kappa -2)}\frac{1}{(\pi ) \left[ 1+\frac{15}{4}\alpha \frac{\kappa ^{2}}{(\kappa -\frac{5}{2})(\kappa - \frac{3}{2})}\right] }\frac{1}{k} \nonumber \\ & \quad \times \left\{ \frac{kA}{\omega }\frac{(\kappa -2)(\kappa -1)}{(\kappa - \frac{5}{2})(\kappa -\frac{3}{2})}+\left( \frac{kA}{\omega }\xi +\frac{1}{ v_{th_{\parallel e}(VC)}}\right) Z_{\kappa 2}(\xi )\right\} \end{aligned}$$
(31)
$$\begin{aligned} I_{6}&=\frac{4\alpha }{v_{th_{\perp e}(VC)}^{2}v_{th_{\parallel e}(VC)}^{2}} A_{VC}\int _{-\infty }^{+\infty }v_{\parallel }^{2}dv_{\parallel }\frac{ \left\{ 1+\frac{kv_{\parallel }}{\omega }A\right\} }{\omega -kv_{\parallel }\pm \Omega _{c}}\nonumber \\ & \quad \times \int _{0}^{\infty }v_{\perp }^{3}dv_{\perp }\left[ 1+\frac{ v_{\parallel }^{2}}{\kappa v_{th_{\parallel e}(VC)}^{2}}+\frac{ v_{_{\perp }}^{2}}{\kappa v_{th_{\perp e}(VC)}^{2}}\right] ^{-\kappa -1} \end{aligned}$$
(32)
$$\begin{aligned} & =-2\alpha \frac{\kappa }{(\kappa -1)}\frac{1}{(\pi )\left[ 1+\frac{15}{4} \alpha \frac{\kappa ^{2}}{(\kappa -\frac{5}{2})(\kappa -\frac{3}{2})}\right] }\frac{1}{kv_{th_{\parallel e}(VC)}}\left\{ \xi \frac{(\kappa -1)}{(\kappa - \frac{3}{2})}\right. \nonumber \\ & \quad +kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\left( \frac{\kappa (\kappa -1)}{ 2(\kappa -\frac{5}{2})(\kappa -\frac{3}{2})}+\xi ^{2}\frac{(\kappa -1)}{ (\kappa -\frac{3}{2})}\right) \nonumber \\ & \quad \left. +(kv_{th_{\parallel e}(VC)}\frac{A}{\omega }\xi +1)\xi ^{2}Z_{\kappa 3}(\xi )\right\} \end{aligned}$$
(33)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, M.A., Aman-ur-Rehman, Sarfraz, M. et al. Numerical exploration of electromagnetic electron whistler-cyclotron instability in Vasyliunas–Cairns distributed non-thermal plasmas: A kinetic theory approach. Eur. Phys. J. Plus 139, 402 (2024). https://doi.org/10.1140/epjp/s13360-024-05159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05159-2

Navigation