Skip to main content
Log in

Modeling and simulation of dispersion-limited fiber communication systems employing directly modulated laser diodes

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper quantifies the role played by fiber dispersion in limiting the transmission distance in directly modulated gigabit optical fiber communication systems (OFCSs). The study is based on modeling and simulation of an OFCS deploying a directly modulated 1.55-μm distributed feedback InGaAsP laser diode, a single-mode fiber and a PIN photodetector. The repeater distance of the system is decided to correspond to a bit error rate of 10−9. The receiver sensitivity corresponding to the back-to-back configuration is calculated. Fiber attenuation was found to limit the maximum transmission distance to 162–202 km under bit rates ranging between 1 and 10 Gbps. This distance was found to be less affected by counting the chromatic dispersion of the fiber up to bit rate of 2 Gbps. A dramatic decrease in the transmission distance is predicted when the bit rate increases further and the system becomes dispersion limited. Influence of dispersion on the transmission distance is quantified in terms of the power penalty of the OFCS system associated with taking account of fiber dispersion. This power penalty is predicted to be within 7 dB for bit rates below 5 Gbps but jumps to values as high as 22 dB at higher bit rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G P Agrawal Optical Fiber Communication Systems (New York: Van Nostrand Reinhold) (2003)

  2. R J Sanferrare AT&T Tech. J. 66 95 (1987)

    Google Scholar 

  3. S K Raghuwanshi Indian J. Phys. 84 831 (2010)

    Article  ADS  Google Scholar 

  4. W Zhou, F Luo, Z Yu, X Zhao and B Li Indian J. Phys. 85 607 (2011)

    Article  ADS  Google Scholar 

  5. S Mukhopadhyay Indian J. Phys. 84 1069 (2010)

    Article  ADS  Google Scholar 

  6. A Gnauck and R Jopson Optical Fiber Telecommunications III, Vol. A (San Diego: Academic Press) (1997)

  7. J M Xie, S Bouchoule, J M Lourtioz, E Brun and D Lesterlin J. Lightwave Technol. 14 179 (1996)

    Article  ADS  Google Scholar 

  8. K Sato, S Kuwahar and Y Miyamoto J. Lightwave Technol. 23 3790 (2005)

    Article  ADS  Google Scholar 

  9. J C Cartledge and G S Burley J. Lightwave Technol. 7 568 (1989)

    Article  ADS  Google Scholar 

  10. G P Agrawal and N K Dutta Semiconductor Lasers (New York: Van Nostrand Reinhold) (1993)

    Google Scholar 

  11. M Ahmed, M Yamada, M Saito IEEE J. Quantum Electron. 37 1600 (2001)

    Article  ADS  Google Scholar 

  12. G P Agrawal Nonlinear Fiber Optics (San Diego: Academic press) (2001)

    Google Scholar 

  13. N Suzuki and T Ozeki J. Lightwave Technol. 11 1486 (1994)

    Article  ADS  Google Scholar 

  14. M J Potasek and G P Agrawal Phys. Rev. A 35 3862 (1987)

    Article  ADS  Google Scholar 

  15. S Kakimoto and H Watanabe IEEE J. Quantum Electron. 34 540 (1998)

    Article  ADS  Google Scholar 

  16. N Henmi, S Fujita, M Yamaguchi, M Shikada and I Mito J. Lightwave Technol. 8 936 (1990)

    Article  ADS  Google Scholar 

  17. P Krehlik P Optoelectron. Rev. 14 119 (2006)

    ADS  Google Scholar 

  18. M Ahmed, M Yamada and S W Z Mahmoud J. Appl. Phys. 101 3119 (2007)

    Article  Google Scholar 

  19. T M Shen and G P Agrawal J. Lightwave Technol. LT-5 653 (1987)

    Article  ADS  Google Scholar 

  20. P S Henry, R A Linke, and A H Gnauck Optical Fiber Telecommunications II (eds.) S E Miller and I P Kaminow (San Diego: Academic Press) (1988)

  21. I Kim, T J Miller and Y K Park IEEE Photon. Technol. Lett. 9 1167 (1997)

    Article  ADS  Google Scholar 

  22. I Tomkos, B Hallock, I Roudas, R Hesse, A Boskovic, J Nakano, and R Vodhanel IEEE Photon. Technol. Lett. 13 735 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, M. Modeling and simulation of dispersion-limited fiber communication systems employing directly modulated laser diodes. Indian J Phys 86, 1013–1020 (2012). https://doi.org/10.1007/s12648-012-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0155-6

Keywords

PACS Nos.

Navigation