Skip to main content
Log in

Synthesis and Exploring Structural and Optical Properties of Ternary PS/SiC/Sb2O3 Nanocomposites for Optoelectronic and Antimicrobial Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The development of a wide range of technologically cutting-edge flexible mille- to micro-sized electronic components/devices are currently driving a significant industrial demand for polymer nanocomposites (PNCs). Employing the solution casting approach, we have created hybrid nanocomposite films using polystyrene (PS) as the host matrix and antimony trioxide (Sb2O3) and silicon carbide (SiC) nanoparticles (0,2,4,6., and 8) wt% as fillers in the PNCs materials' advancements. The morphology of the nanocomposite was examined using an optical microscope (OM), which demonstrated that polystyrene is exceptionally miscible due to its finer form and smooth, homogeneous surface, as well as the additive concentration SiC and Sb2O3 NPs, which are evenly distributed on the surface of the polymer nanocomposite film. The surface morphology of (PS/SiC/Sb2O3) films is revealed by field emission scan electron microscope (FE-SEM) to be uniform and coherent, with a significant amount of aggregates or fragments randomly dispersed over the top surface. The results of the optical properties for (PS/SiC/Sb2O3) nanocomposites demonstrated that the absorbance, coefficient of absorption, index of refractive, coefficient of extinction, and conductivity of optical of (PS/SiC/Sb2O3) nanocomposites rises with rising of SiC/Sb2O3 NPs, while the transmittance decreased. The optical energy gap decreased from (4.19 eV to 2.69 eV) and from (3.5 eV to 1.45 eV) for allowed and forbidden indirect transition respectively when concentration reaches 8 wt.%. The decreases in optical energy gap and increases in refractive index brought on by the inclusion of SiC/Sb2O3 NPs point to the possibility of their usage in optoelectronic devices. By raising the SiC/Sb2O3 NPs ratio in polystyrene, Klebsiella and Staphylococcus microorganism inhibition zone values rose to 24 and 25 mm. According to experimental findings, the nanocomposites have excellent antibacterial action. Finally, the results indicate that the PS/SiC/Sb2O3 nanocomposites can be widely use as recyclable catalysts for reducing organic dyes in wastewater treatment as well as an antibacterial agent for use in medical and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Available.

References

  1. Obaid HN, Habeeb MA, Rashid FL, Hashim A (2013) Thermal energy storage by nanofluids. J Eng Appl Sci 8(5):143–145. https://doi.org/10.36478/jeasci.2013.143.145

    Article  Google Scholar 

  2. Cao JP, Zhao J, Zhao X, Hu GH, Dang ZM (2013) Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites. J Appl Polym Sci 130(1):638–644. https://doi.org/10.1002/app.39186

    Article  CAS  Google Scholar 

  3. Abou Hammad AB, Mansour AM, Elhelali ThM, El Nahrawy AM (2023) J Inorg Organomet Polym Mater 33:544–554. https://doi.org/10.1007/s10904-022-02519-2

    Article  CAS  Google Scholar 

  4. Ye C, Wang G, Kong M, Zhang L (2006) Controlled synthesis of Sb2 O3 nanoparticles, nanowires, and nanoribbons. J Nanomater 2006:1–5. https://doi.org/10.1155/JNM/2006/95670

    Article  CAS  Google Scholar 

  5. Habeeb MA (2011) Effect of rate of deposition on the optical parameters of GaAs films. Eur J Sci Res 57(3):478–484

    Google Scholar 

  6. Mahdi SM, Habeeb MA (2022) Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/ NiO ) Nanostructure Doped (PEO/PVA) polymeric Blend for Electronics Fields. Phys Chem Solid State 23(4):785–792. https://doi.org/10.15330/pcss.23.4.785-792

    Article  CAS  Google Scholar 

  7. Zeng DW, Xie CS, Zhu BL, Song WL (2004) Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method. Mater Lett 58(3):312–315. https://doi.org/10.1016/S0167-577X(03)00476-2

    Article  CAS  Google Scholar 

  8. Hadi AH, Habeeb MA (2021) Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends. J Mech Eng Res Dev 44(3):265–274. https://jmerd.net/03-2021-265-274/

  9. ElNahrawy AM, Haroun AA, Hamadneh I, Al-Dujaili AH, Kamel S (2017) Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole. Carbohyd Polym 168:182–190. https://doi.org/10.1016/j.carbpol.2017.03.066

    Article  CAS  Google Scholar 

  10. Hadi AH, Habeeb MA (2021) The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications. J Phys Conf Ser 1973(1):012063. https://doi.org/10.1088/1742-6596/1973/1/012063

    Article  CAS  Google Scholar 

  11. Gu G, Xu J, Wu Y, Chen M, Wu L (2011) Synthesis and antibacterial property of hollow SiO 2/Ag nanocomposite spheres. J Colloid Interface Sci 359(2):327–333. https://doi.org/10.1016/j.jcis.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  12. El Nahrawy AM, Abou Hammad AB, A. M. bakr, Th. I. Shaheen and A. M. Mansour (2020) Appl Phys A 126:654. https://doi.org/10.1007/s00339-020-03822-w

    Article  CAS  Google Scholar 

  13. Mahdi SM, Habeeb MA (2023) Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric nanocomposites. AIMS Materials Science 10(2):288–300. https://doi.org/10.3934/matersci.2023015

    Article  CAS  Google Scholar 

  14. Bhaiswar JB, Salunkhe MY, Dongre SP, Kumbhare BT (2014) Comparative Study on Thermal Stability and Optical Properties of PANI / CdS and PANI / PbS nanocomposit e. J Appl Phys 2014(1):79–82

    Google Scholar 

  15. Habeeb MA, Rahdi WH (2023) Titanium carbide nanoparticles filled PVA-PAAm nanocomposites, structural and electrical characteristics for application in energy storage. Opt Quant Electron 55(4):334. https://doi.org/10.1007/s11082-023-04639-6

    Article  CAS  Google Scholar 

  16. Mahdi SM, Habeeb MA (2022) Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications". Opt Quantum Electron 54(12):854. https://doi.org/10.1007/s11082-022-04267-6

    Article  CAS  Google Scholar 

  17. Gautam A, Ram S (2010) Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater Chem Phys 119(1):266–271. https://doi.org/10.1016/j.matchemphys.2009.08.050

    Article  CAS  Google Scholar 

  18. Mahdi SM, Habeeb MA (2022) Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices". Digest J Nanomater Biostruct 17(3):941–948. https://doi.org/10.15251/DJNB.2022.173.941

    Article  Google Scholar 

  19. Hemdan BA, El Nahrawy AM, Mansour AM, Abou Hammad AB (2019) Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environ Sci Pollut Res 26:9508–9523. https://doi.org/10.1007/s11356-019-04431-8

    Article  CAS  Google Scholar 

  20. Hayder N, Habeeb MA, Hashim A (2020) Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egypt J Chem 63:577–592. https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  21. De Girolamo Del A, Mauro S, Galvagno G, Nenna R, Miscioscia CM, Portofino S (2016) End-of-Waste SiC-Based Flexible Substrates with Tunable Electrical Properties for Electronic Applications. Langmuir 32(41):10497–10504. https://doi.org/10.1021/acs.langmuir.6b02716

    Article  CAS  Google Scholar 

  22. Jukić M, Sviben I, Zorić Z, Milardović S (2012) Effect of polyvinylpyrrolidone on the formation AgBr grains in gelatine media. Croat Chem Acta 85(3):269–276. https://doi.org/10.5562/cca1919

    Article  CAS  Google Scholar 

  23. A. P. Indolia and M. S. Gaur, “Optical properties of solution grown PVDF-ZnO nanocomposite thin films,” J Polym Res, Vol. 20, No. 1, 2013, https://doi.org/10.1007/s10965-012-0043-y

  24. Jebur QM, Hashim A, Habeeb MA (2020) Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egypt J Chem 63:719–734. https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  25. P. Phukan and D. Saikia, “Optical and structural investigation of cdse quantum dots dispersed in PVA matrix and photovoltaic applications,” Int J Photoenergy, Vol. 2013, 2013, https://doi.org/10.1155/2013/728280

  26. Habeeb MA, Hashim A, Hayder N (2020) Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors". Egypt J Chem 63:709–717. https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  27. Mahdi SM, Habeeb MA (2023) Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym Bull. https://doi.org/10.1007/s00289-023-04676-x

    Article  Google Scholar 

  28. I. Vlaeva, T. Yovcheva, S. Sainov, V. Dragostinova, and S. Stavrev, Optical properties of PVA films with diamond and titania nanoparticles, J Phys Conf Ser, Vol. 253, No. 1, 2010, https://doi.org/10.1088/1742-6596/253/1/012027.

  29. Hashim A, Habeeb MA, Jebur QM (2020) Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites". Egypt J Chem 63:735–749. https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  30. Habeeb MA, Jaber ZS (2022) Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium Carbide Nanoparticles for Optics and Photonics Applications. East Eur J Phys 4:176–182. https://doi.org/10.26565/2312-4334-2022-4-18

    Article  Google Scholar 

  31. Dieter Mergel DM, Martin Jerman MJ (2010) Density and refractive index of thin evaporated films”. Chinese Opt Lett 8(1):67–72. https://doi.org/10.3788/col201008s1.0067

    Article  Google Scholar 

  32. Jebur QM, Hashim A, Habeeb MA (2020) Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites". Egypt J Chem 63(2):611–623. https://doi.org/10.21608/ejchem.2019.10197.1669

    Article  Google Scholar 

  33. Leontie L, Caraman M, Visinoiu A, Rusu GI (2005) On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Films 473(2):230–235. https://doi.org/10.1016/j.tsf.2004.07.061

    Article  CAS  Google Scholar 

  34. Habeeb MA, Mahdi WS (2019) Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application ". Int J Emerg Trends Eng Res 7(9):247–255. https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  35. Dwech MH, Habeeb MA, Mohammed AH (2022) Fabrication and Evaluation of Optical Characterstic of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics. Ukr J Phys 67(10):757–762. https://doi.org/10.15407/ujpe67.10.757

    Article  Google Scholar 

  36. Selvi J, Mahalakshmi S, Parthasarathy V (2017) Synthesis, structural, optical, electrical and thermal studies of polyvinyl alcohol/CdO nanocomposite films. J Inorg Organomet Polym Mater 27:1918–1926. https://doi.org/10.1007/s10904-017-0662-1

    Article  CAS  Google Scholar 

  37. Habeeb MA, Hamza RSA (2018) Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application". Indones J Electric Eng Inf 6(4):428–435. https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  38. Mergen ÖB, Umut E, Arda E, Kara S (2020) A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites”. Polym Test 90:106682. https://doi.org/10.1016/j.polymertesting.2020.106682

    Article  CAS  Google Scholar 

  39. Habeeb MA, Abdul Hamza RS (2018) Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors". J Bionanosci 12(3):328–335. https://doi.org/10.1166/jbns.2018.1535

    Article  CAS  Google Scholar 

  40. El Nahrawy AM, Haroun AA, Abou Hammad AB, Diab MA, Kamel S (2019) Uniformly Embedded Cellulose/Polypyrrole-TiO2 Composite in Sol-Gel Sodium Silicate Nanoparticles: Structural and Dielectric Properties. Silicon 11:1063–1070. https://doi.org/10.1007/s12633-018-9910-4

  41. Habeeb MA, Hashim A, Hayder N (2020) Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt J Chem 63:697–708. https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  42. Kattimuttathu SI, Chidambaram K, Vinod V, Rajender N, Venkateswara RM, Miroslav Č (2015) Synthesis, characterization and optical properties of graphene oxide-polystyrene nanocomposites. Polym Adv Technol 26(3):214–222. https://doi.org/10.1002/pat.3435

    Article  CAS  Google Scholar 

  43. Abbas NK, Habeeb MA, Algidsawi AJK (2015) Preparation of chloro penta amine cobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate". Int J Polym Sci 2015:926789. https://doi.org/10.1155/2015/926789

    Article  CAS  Google Scholar 

  44. El Nahrawy AM, Bakr AM, Abou Hammad AB, Hemdan BA (2020) High performance of talented copper/magneso-zinc titanate nanostructures as biocidal agents for inactivation of pathogens during wastewater disinfection. Appl Nanosci 10:3585–3601. https://doi.org/10.1007/s13204-020-01454-3

    Article  CAS  Google Scholar 

  45. El Nahrawy AM, Hemdan BA, Abou Hammad AB, King Abia AL, Bakr AM (2020) Microstructure and Antimicrobial Properties of Bioactive Cobalt Co-Doped Copper Aluminosilicate Nanocrystallines. Silicon 12:2317–2327. https://doi.org/10.1007/s1263.3-019-00326

    Article  Google Scholar 

  46. El Nahrawy AM, Ali AI, Mansour AM, Abou Hammad AB, Hemdan BA, Kamel S (2022) Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydr Polym 291:119656. https://doi.org/10.1016/j.carbpol.2022.119656

    Article  CAS  PubMed  Google Scholar 

  47. Habeeb MA (2014) Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites". J Eng Appl Sci 9(4):102–108. https://doi.org/10.36478/jeasci.2014.102.108

    Article  Google Scholar 

  48. Habeeb MA, Kadhim WK (2014) Study the optical properties of (PVA-PVAC-Ti) nanocomposites". J Eng Appl Sci 9(4):109–113. https://doi.org/10.36478/jeasci.2014.109.113

    Article  Google Scholar 

  49. Prabhu YT, Rao KV, Kumari BS, Kumar VSS, Pavani T (2015) Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett 5(2):85–92. https://doi.org/10.1007/s40089-015-0141-z

    Article  CAS  Google Scholar 

  50. El Nahrawy AM, Mansour AM, Abou Hammad AB, Ibrahim RS, Abouelnaga AM, Abdel-Aziz MS (2020) J Inorg Organomet Polym Mater 30:3084–3094. https://doi.org/10.1007/s10904-020-01469

    Article  Google Scholar 

  51. Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgments to University of Babylon

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Nawras Karim Al-Sharifi and Majeed Ali Habeeb. The first draft of the manuscript was written by Majeed Ali Habeeb and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

The Research is not involving the studies on human or their data.

Conflict of interest

No conflict of interest.

Consent to participate

Consent.

Consent for publication

Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharifi, N.K., Habeeb, M.A. Synthesis and Exploring Structural and Optical Properties of Ternary PS/SiC/Sb2O3 Nanocomposites for Optoelectronic and Antimicrobial Applications. Silicon 15, 4979–4989 (2023). https://doi.org/10.1007/s12633-023-02418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02418-2

Keywords

Navigation