Skip to main content

Advertisement

Log in

Titanium carbide nanoparticles filled PVA-PAAm nanocomposites: structural and electrical characteristics for application in energy storage

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the current work, (PVA-PAAm-TiC) nanocomposites films were made utilizing the casting approach with various TiC nanoparticle weight percentages (0, 2, 4, 6, and 8). Nanocomposites' structural and electrical characteristics were investigated. When the proportion is (8 wt.%), optical microscope images reveal that inside the polymers, TiC nanoparticles build a continuous network, once compared to pure (PVA-PAAm) film. The FTIR spectrum demonstrates a change in peak location in addition changes in terms of form and intensity. The surface morphology of the (PVA-PAAm-TiC) NCs films may be seen under scanning electron microscopy as several homogenous, coherent aggregates or pieces randomly scattered on the top surface. Electrical conductivity of nanocomposites in both DC and AC increases by increasing titanium carbide NPs concentrations and temperature, so that dielectric constant and dielectric loss of films are increasing with increases of titanium carbide NPs. However, the activation energy of DC electrical conductivity decreases from 0.612375 to 0.36656 eV when titanium carbide NPs concentrations reach 8%, making it suitable for many electronic approaches. Thermal energy storage, release melting and solidification periods were found to be shorter with the addition of TiC NP concentrations. According to the application findings for (PVA-PAAm-TiC) NCs, (PVA-PAAm-TiC) nanostructures were found to be effective and inexpensive for a variety of nanoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Available.

References

  • Abbas, N.K., Habeeb, M.A., Algidsawi, A.J.K.: Preparation of chloro penta amine cobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int. J. Polym. Sci. 2015, 926789 (2015). https://doi.org/10.1155/2015/926789

    Article  Google Scholar 

  • Abutalib, M.M., Rajeh, A.: Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 1–11 (2021). https://doi.org/10.1016/j.polymertesting.2020

    Article  Google Scholar 

  • Ahilandeswari, E., Rajesh Kanna, R., Sakthipandi, K.: Synthesis of neodymium-doped barium nanoferrite: analysis of structural, optical, morphological, and magnetic properties. Phys. B Condens. Matter 599, 412425 (2020). https://doi.org/10.1016/j.physb.2020.412425

    Article  Google Scholar 

  • Alghamdi, H.M., Abutalib, M.M., Rajeh, A., Mannaa, M.A., Nur, O., Abdelrazek, E.M.: Effect of the Fe2O3/TiO2 nanoparticles on the structural, mechanical, electrical properties and antibacterial activity of the biodegradable chitosan/polyvinyl alcohol blend for food packaging. J. Polym. Environ. 30, 3865–3874 (2022)

    Article  Google Scholar 

  • Aytimur, A., Uslu, I.: Promising materials for wound dressing: PVA/PAA/PVP electrospun nanofibers. Polym.-Plast. Technol. Eng. 53, 655–660 (2014)

    Article  Google Scholar 

  • Brama, M., Rhodes, N., Hunt, J., Ricci, A., Teghil, R., Migliaccio, S., Rocca, C.D., Leccisotti, S., Lioi, A., Scandurra, M., Maria, G.D., Ferro, D., Pu, F., Panzini, G., Politi, L., Scandurra, R.: Effect of titanium carbide coating on the osseo integration response in vitro and in vivo. Biomaterials 28, 595–608 (2007)

    Article  Google Scholar 

  • Bulla, S.S., Bhajantri, R.F., Chavan, C., Sakthipandi, K.: Synthesis and characterization of polythiophene/zinc oxide nanocomposites for chemiresistor organic vapor-sensing application. J. Polym. Res. 28, 251 (2021). https://doi.org/10.1007/s10965-021-02618-7

    Article  Google Scholar 

  • Chavan, C., Bhajantri, R.F., Cyriac, V., Bulla, S., Ravikumar, H.B., Raghavendra, M., Sakthipandi, K.: Exploration of free volume behavior and ionic conductivity of PVA: x (x = 0, Y2O3, ZrO2, YSZ) ion-oxide conducting polymer ceramic composites. J. Non-Cryst. Solids 590, 121696 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121696

    Article  Google Scholar 

  • Chavan, C., Bhajantri, R.F., Bulla, S., Ravikumar, H.B., Raghavendra, M., Sakthipandi, K., Kumar, K.Y., Prasanna, B.P.: Ion dynamics and positron annihilation studies on polymer ceramic composite electrolyte system (PVA/NaClO4/Y2O3): application in electrochemical devices. Ceram. Int. 48(12), 17864–17884 (2022b). https://doi.org/10.1016/j.ceramint.2022.03.058

    Article  Google Scholar 

  • Chiad, S.S., Oboudi, S.F., Abass, K.H., Habubi, N.F.: Characterization of silver/poly (Vinyl Alcohol) (Ag/PVA) films prepared by casting technique. Iraqi J. Polym. 16(2), 10–18 (2012)

    Google Scholar 

  • Devikala, S., Kamaraj, P., Arthanareeswari, M.: Synthesis, characterization and AC conductivity of PVA based composite. IOSR J. Appl. Chem. 2, 24–28 (2012)

    Article  Google Scholar 

  • Divya, R., Meena, M., Mahadevan, C.K., Padma, C.M.: Formation and properties of ZnO nanoparticle dispersed PVA films. Int. J. Eng. Res. Technol. 3(7), 722–725 (2014)

    Google Scholar 

  • Faraz Ahmer, M., Hameed, S.: Studies on the Electrical Conductivity Measurement of Organic/Organic Composite Polyvinyl alcohol/Polyaniline (PVA/PANI). Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3, 12731–12736 (2014)

    Google Scholar 

  • Gurland, J.: Electrical resistivity. J. Polym. Plast. Technol. Eng. 19(1), 21–51 (1982)

    Google Scholar 

  • Habeeb, M.A.: Effect of rate of deposition on the optical parameters of GaAs films. Eur. J. Sci. Res. 57(3), 478–484 (2011)

    Google Scholar 

  • Habeeb, M.A.: Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites. J. Eng. Appl. Sci. 9(4), 102–108 (2014)

    Google Scholar 

  • Habeeb, M.A., Abdul Hamza, R.S.: Novel of (biopolymer blend-MgO) nanocomposites: fabrication and characterization for humidity sensors. J. Bionanosci. 12(3), 328–335 (2018). https://doi.org/10.1166/jbns.2018.1535

    Article  Google Scholar 

  • Habeeb, M.A., Hamza, R.S.A.: Synthesis of (polymer blend–MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones. J. Electr. Eng. Inf. 6(4), 428–435 (2018). https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  • Habeeb, M.A., Jaber, Z.S.: Enhancement of structural and optical properties of CMC/PAA blend by addition of zirconium carbide nanoparticles for optics and photonics applications, East European. J. Phys. 4, 176–182 (2022). https://doi.org/10.26565/2312-4334-2022-4-18ancment

    Article  Google Scholar 

  • Habeeb, M.A., Kadhim, W.K.: Study of the electrical properties of (PVA-PVAC-Ti) nanocomposites. Aust. J. Basic Appl. Sci. 8(10), 316–322 (2014)

    Google Scholar 

  • Habeeb, M.A., Mahdi, W.S.: Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application. Int. J. Emerg. Trends Eng. Res. 7(9), 247–255 (2019). https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  • Habeeb, M.A., Hashim, A., Hayder, N.: Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt. J. Chem. 63, 697–708 (2020). https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  • Habeeb, M.A., Hashim, A., Hayder, N.: Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors. Egypt. J. Chem. 63, 709–717 (2020). https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  • Hadi, A.H., Habeeb, M.A.: Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends". J. Mech. Eng. Res. Dev. 44(3), 265–274 (2021a)

    Google Scholar 

  • Hadi, A.H., Habeeb, M.A.: The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications. J. Phys. Conf. Ser. 1973(1), 012063 (2021). https://doi.org/10.1088/1742-6596/1973/1/012063

    Article  Google Scholar 

  • Harikrishnan, S., Kalaiselvam, S.: Experimental investigation of melting and solidification characterization of nanofluid as PCM for solar water heating system. Int. J. Emerg. Technol. Adv. Eng. 3, 628–635 (2013)

    Google Scholar 

  • Hashim, A., Habeeb, M.A., Jebur, Q.M.: Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egypt. J. Chem. 63, 735–749 (2020). https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  • Hayder, N., Habeeb, M.A., Hashim, A.: Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egypt. J. Chem. 63, 577–592 (2020). https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  • Huang, J., Lu, S., Kong, X., Liu, S., Li, Y.: Form-stable phase change materials based on on eutectic mixture of tetradecanol and fatty acids for building energy storage: preparation and performance analysis. J. Mater. 6, 4758–4775 (2013)

    Article  ADS  Google Scholar 

  • Jebur, Q.M., Hashim, A., Habeeb, M.A.: Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egypt. J. Chem. 63, 719–734 (2020). https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  • Jebur, Q.M., Hashim, A., Habeeb, M.A.: Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites. Egypt. J. Chem. 63(2), 611–623 (2020). https://doi.org/10.21608/ejchem.2019.10197.1669

    Article  Google Scholar 

  • Lenin, N., Sakthipandi, K., Rajesh Kanna, R., Rajkumar, G.: Electrical, magnetic and structural properties of polymer-blended lanthanum-added nickel nano-ferrites. Ceram. Int. 44(17), 21866–21873 (2018). https://doi.org/10.1016/j.ceramint.2018.08.295

    Article  Google Scholar 

  • Mahdi, S.M., Habeeb, M.A.: Fabrication and tailored structural and dielectric characteristics of (SrTiO3/NiO) nanostructure doped (PEO/PVA) polymeric blend for electronics fields. Phys. Chem. Solid State 23(4), 785–792 (2022). https://doi.org/10.15330/pcss.23.4.785-792

    Article  Google Scholar 

  • Mahdi, S.M., Habeeb, M.A.: Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications. Opt. Quant. Electron. 54(12), 854 (2022b). https://doi.org/10.1007/s11082-022-04267-6

    Article  Google Scholar 

  • Mahdi, S.M., Habeeb, M.A.: Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Dig. J. Nanomater. Biostruct. 17(3), 941–948 (2022). https://doi.org/10.15251/DJNB.2022.173.941

    Article  Google Scholar 

  • Manjunath, A., Deepa, T., Supreetha, N.K., Irfan, M.: Studies on AC electrical conductivity and dielectric properties of PVA/NH4NO3 solid polymer electrolyte films. Adv. Mater. Phys. Chem. 5, 295–301 (2015)

    Article  Google Scholar 

  • Mansour, A.F., Mansour, S.F., Abdo, M.A.: Enhancement of structural and electrical properties of ZnO/ PVA nanocomposities. IOSR Journal of Applied Physics 7, 97–106 (2015)

    Google Scholar 

  • Mishra, S.C.: Dielectric behavior of bio-waste reinforced polymer composites. Glob. J. Eng. Sci. Res. 1(9), 32–44 (2014)

    Google Scholar 

  • Mohammed, A.H., Habeeb, M.A.: Co2O3 nanofiller-based polymer blend nanocomposites for enhanced optical properties for optoelectronics devices. HIV Nurs. 22(2), 1167–1172 (2022). https://doi.org/10.31838/hiv22.02.225

    Article  Google Scholar 

  • Obaid, H.N., Habeeb, M.A., Rashid, F.L., Hashim, A.: Thermal energy storage by nanofluids. J. Eng. Appl. Sci. 8(5), 143–145 (2013). https://doi.org/10.36478/jeasci.2013.143.145

    Article  Google Scholar 

  • Rajesh Kanna, R., Sakthipandi, K., Lenin, N., James Jebaseelan Samuel, E.: Neodymium doped on the manganese-copper nanoferrites: analysis of structural, optical, dielectric and magnetic properties. J. Mater. Sci. Mater. Electron. 30, 4473–4486 (2019). https://doi.org/10.1007/s10854-019-00736-z

    Article  Google Scholar 

  • Shehap, A.M., Akil, D.S.: Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 9, 17–36 (2016)

    Google Scholar 

  • Shui, G., Hu, J., Qiu, M., Wei, M., Xiao, D.: Study of dielectric properties for (Calcium Oxide-poly-vinyl alcohol) composites. J. Chin. Chem. Lett. 15(12), 1501–1504 (2004)

    Google Scholar 

  • Tantis, I., Psarras, G.C., Tasis, D.: Functionalized graphene—poly(vinyl alcohol) nanocomposites: physical and dielectric properties. J. Exp. Polym. Lett. 6(4), 283–292 (2012)

    Article  Google Scholar 

  • Tawfik, E.K., Fawzy, Y.H.A., El-Ghazaly, M.H., Ashry, H.A.: Study of the DC-electrical properties of a novel polyvinyl alcohol/Ag hybrid nanocomposites. Phys. Sci. Res. 3(2), 26–36 (2015)

    Google Scholar 

  • Wang, F., Zhou, D., Gong, S.: Dielectric behavior of TiC–PVDF nanocomposities. Phys. Status Solidi RRL 3(1), 22–24 (2009)

    Article  ADS  Google Scholar 

  • Zidan, H.M., El-Ghamaz, N.A., Abdelghany, A.M., Lotfy, A.: Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int. J. Electrochem. Sci 11, 9041–9056 (2016)

    Article  Google Scholar 

  • Zike, Z.I., Habeeb, M.A.: Role of BaTiO3/TiO2 nanofillers on the optical characteristics of biopolymer for optics and photonics fields. HIV Nurs. 22(2), 1185–1189 (2022). https://doi.org/10.31838/hiv22.02.229

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgments to University of Babylon.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MAH and WHR. The first draft of the manuscript was written by MAH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Conflict of interest

No conflict of interest.

Consent to participate

Consent.

Consent for publication

Consent.

Ethical approval

The Research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habeeb, M.A., Rahdi, W.H. Titanium carbide nanoparticles filled PVA-PAAm nanocomposites: structural and electrical characteristics for application in energy storage. Opt Quant Electron 55, 334 (2023). https://doi.org/10.1007/s11082-023-04639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04639-6

Keywords

Navigation