Skip to main content

Advertisement

Log in

Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study focused on the modification of the structural, and optical characteristics of polyethylene oxide and polyviny alcohol blend with different weight percentages of strontium-titanium oxide and cobalt oxide nanoparticles (0, 1%, 2%, 3%, and 4%) wt. prepared by solvent casting technique. All samples were structurally investigated by scanning electron microscope which revealed an association between the polymer matrix and the additive. Optical microscope images show that the additive distribution of NPs in the blend was homogeneous and the nanoparticles create a continuous network inside the polymers. Fourier transform infrared rays showed a shift in the peak position as well as a change in shape and intensity compared with pure (PEO–PVA). Optical examinations showed that the absorbance of (PEO–PVA)/(SrTiO3–CoO) nanocomposites increased from 50 to 97% when the concentrations of strontium-titanium oxide and cobalt oxide nanoparticles reached 4 wt.%, while the energy gap of (PEO–PVA)/(SrTiO3–CoO) nanocomposites was dropped from 3.7 to 1.7 eV and from 3.9 to 1.6 eV for allowed and forbidden indirect transition, respectively, with the addition of 4 wt.% of (SrTiO3–CoO) nanofiller. These results may be as key to employ the (PEO–PVA)/(SrTiO3–CoO) nanostructures in various photonics fields and optoelectronics nanodevices. The refractive index, extinction coefficient, dielectric constant, and optical conductivity increase with increasing the concentration of (SrTiO3–CoO) nanoparticles, and this behavior make it may be considered as excellent optical materials for photonics applications. The antibacterial properties of the (PEO–PVA)/(SrTiO3–CoO) nanocomposites were investigated against Staphylococcus aureus (S. aureus) and (E. coli). Experimental results showed that the nanocomposites have good activity for antibacterial. Finally, the results indicated that the (PEO–PVA)/(SrTiO3–CoO) nanostructures can be considered as promising materials for optoelectronics nanodevices and antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

Available.

References

  1. Choi BR, Park S-J, Kim S (2015) Preparation of polyethylene oxidecomposite electrolytes containing imidazolium cationsalt-attached titanium oxides and their conducing behavior. J Ind Eng Chem 31:352–359. https://doi.org/10.1016/j.jiec.2015.07.009

    Article  CAS  Google Scholar 

  2. Mahdi SM, Habeeb MA (2022) Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Digest J Nanomater Biostruct 17(3):941–948. https://doi.org/10.15251/DJNB.2022.173.941

    Article  Google Scholar 

  3. Saboormaleki M, Barnes AR, Schlindwein WS (2004) Characterization of polyethylene oxide (PEO) based polymer electrolytes. The Electrochemical Societ, Inc. De Montfort University, Leicester

    Google Scholar 

  4. Chandrakala HN, Ramaraj B, Siddaramaiah S (2014) Optical properties and structural characteristics of zinc oxidesingle bondcerium oxide doped polyvinyl alcohol films. J Alloys Compd 586:333–342. https://doi.org/10.1016/j.jallcom.2013.09.194

    Article  CAS  Google Scholar 

  5. Obaid HN, Habeeb MA, Rashid FL, Hashim A (2013) Thermal energy storage by nanofluids. J Eng Appl Sci 8(5):143–145. https://doi.org/10.36478/jeasci.2013.143.145

    Article  Google Scholar 

  6. Jellison GE, Boatner LA, Lowndes DH, McKee RA, Godbole M (1994) Optical functions of transparent thin films of SrTiO3, BaTiO3, and SiOx determined by spectroscopic ellipsometry. Appl Opt 33:6053

    Article  CAS  PubMed  Google Scholar 

  7. McKee RA, Walker FJ, Chisholm MF (1998) Crystalline oxides on silicon: the first five monolayers. Phys Rev Lett 81(14):3014. https://doi.org/10.1103/PhysRevLett.81.3014

    Article  CAS  Google Scholar 

  8. He X, Shi H (2011) synthesis and anomalous magnetic properties of hexagonal CoO Nanoparticles. Mater Res Bullet 46(10):1692–1697. https://doi.org/10.1016/j.materresbull.2011.05.037

    Article  CAS  Google Scholar 

  9. Habeeb MA (2011) Effect of rate of deposition on the optical parameters of GaAs films. Eur J Sci Res 57(3):478–484

    Google Scholar 

  10. Hayder N, Habeeb MA, Hashim A (2020) Structural, optical and dielectric properties of (PS–In2O3/ZnCoFe2O4) nanocomposites. Egypt J Chem 63:577–592. https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  11. Jebur QM, Hashim A, Habeeb MA (2020) Structural, A.C electrical and optical properties of (polyvinyl alcohol–polyethylene oxide–aluminum oxide) nanocomposites for piezoelectric devices. Egypt J Chem 63:719–734. https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  12. Qin D, Yang G, Zhang L, Du X, Wang Y (2014) Synthesis and optical characteristics of PAM/HgS nanocomposites. Bullet Korean Chem Soc 35(4):1077–1081. https://doi.org/10.5012/bkcs.2014.35.4.1077

    Article  CAS  Google Scholar 

  13. Anitha S, Mageshwari PL, Priya R, Ragu R, Das SJ (2022) Prospective theoretical investigations of optical, dielectric, mechanical and third-order NLO property in potassium tri-hydrogen di-succinate single crystal. Chin J Phys 76:145–171. https://doi.org/10.1016/j.cjph.2021.10.033

    Article  CAS  Google Scholar 

  14. Priya R, Anitha S, Latha Mageshwari PS, Ragu R (2020) Exploration on transport process of optically active third-order nonlinear disodium succinate hexahydrate (β phase) single crystals encompassing self-focusing nature. J Mater Sci Mater Electron 31:21288–21302. https://doi.org/10.1007/s10854-020-04641-8

    Article  CAS  Google Scholar 

  15. Hadi AH, Habeeb MA (2021) The dielectric properties of (PVA–PVP–CdS) nanocomposites for gamma shielding applications. J Phys Conf Ser 1973(1):012063. https://doi.org/10.1088/1742-6596/1973/1/012063

    Article  CAS  Google Scholar 

  16. Kumar NB, Crasta V, Praveen BM (2014) Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys Res Int. https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  17. Habeeb MA, Mahdi WS (2019) Characterization of (CMC–PVP–Fe2O3) nanocomposites for gamma shielding application. Int J Emerg Trends Eng Res 7(9):247–255. https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  18. Randjbaran E, Zahari R, Vaghei R (2014) Scanning electron microscopy interpretation in carbon nanotubes composite materials after postbuckling-review paper. MATRIX Acad Int Online J Eng Technol 2(2):1–6

    Google Scholar 

  19. Blythe T, Bloor D (2005) Electrical properties of polymers, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  20. Habeeb MA, Hashim A, Hayder N (2020) Fabrication of (PS–Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors. Egypt J Chem 63:709–717. https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  21. Upadhyay VS, Dubey SK, Singh A, Tripathi S (2014) Structural, optical and morphological properties of PVA/Fe2O3 nanocomposite thin films. IJCPS 3:43

    Google Scholar 

  22. Mahdi SM, Habeeb MA (2022) Fabrication and tailored structural and dielectric characteristics of (SrTiO3/NiO) nanostructure doped (PEO/PVA) polymeric blend for electronics fields. Phys Chem Solid State 23(4):785–792. https://doi.org/10.15330/pcss.23.4.785-792

    Article  CAS  Google Scholar 

  23. Selvi J, Mahalakshmi S, Parthasarathy V (2017) Synthesis, structural, optical, electrical and thermal studies of polyvinyl alcohol/CdO nanocomposite films. J Inorg Organomet Polym Mater 27:1918–1926. https://doi.org/10.1007/s10904-017-0662-1

    Article  CAS  Google Scholar 

  24. Jebur QM, Hashim A, Habeeb MA (2020) Fabrication, structural and optical properties for (polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites. Egypt J Chem 63(2):611–623. https://doi.org/10.21608/ejchem.2019.10197.1669

    Article  Google Scholar 

  25. Abbas NK, Habeeb MA, Algidsawi AJK (2015) Preparation of chloro penta amine cobalit (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int J Polym Sci 2015, Article ID 926789. https://doi.org/10.1155/2015/926789

  26. Hashim A, Habeeb MA, Jebur QM (2020) Structural, dielectric and optical properties for (polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egypt J Chem 63:735–749. https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  27. Yingkang W, Yang Y, Ruicheng R (2009) A study on poly (ethylene oxide)/poly (vinyl acetate) blends. Chin J Polym Sci 3:289–299. https://doi.org/10.1002/pola.23288

    Article  CAS  Google Scholar 

  28. Habeeb MA, Hamza RSA (2018) Synthesis of (polymer blend—MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones J Electr Eng Inf 6(4):428–435. https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  29. Choudhary S (2018) Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J Phys Chem Solids 121:196–209. https://doi.org/10.1016/j.jpcs.2018.05.017

    Article  CAS  Google Scholar 

  30. Habeeb MA, Abdul Hamza RS (2018) Novel of (biopolymer blend-MgO) nanocomposites: fabrication and characterization for humidity sensors. J Bionanosci 12(3):328–335. https://doi.org/10.1166/jbns.2018.1535

    Article  CAS  Google Scholar 

  31. Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF–ZnO nanocomposite thin films. J Polym Res 20(43):1–8. https://doi.org/10.1007/s10965-012-0043-y

    Article  CAS  Google Scholar 

  32. Varishetty MM, Qiu W, Gao Y, Chen W (2010) Structure, electrical and optical properties of (PVA/LiAsF6) polymer composite electrolyte films. Polym Eng Sci. https://doi.org/10.1002/pen.21437

    Article  Google Scholar 

  33. Habeeb MA, Hashim A, Hayder N (2020) Structural and optical properties of novel (PS–Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt J Chem 63:697–708. https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  34. Nemade KR, Waghuley SA (2014) Synthesis of MgO nanoparticles by solvent mixed spraypyrolysis technique for optical investigation. Int J Metals 4, Article ID 389416. https://doi.org/10.1155/2014/389416+

  35. Wadatkar NS, Waghuley SA (2015) Complex optical studies on conducting polyindole as-synthesized through chemical route. Egypt J Basic Appl Sci 2(1):19–24. https://doi.org/10.1016/j.ejbas

    Article  Google Scholar 

  36. Habeeb MA, Kadhim WK (2014) Study the optical properties of (PVA–PVAC–Ti) nanocomposites. J Eng Appl Sci 9(4):109–113. https://doi.org/10.36478/jeasci.2014.109.113

    Article  Google Scholar 

  37. Hadi AH, Habeeb MA (2021) Effect of nanoparticles on the optical properties of (PVA–PVP) blends. J Mech Eng Res Dev 44(3):265–274

    Google Scholar 

  38. Ghanipour M, Dorranian D (2013) Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J Nanomater. https://doi.org/10.1155/2013/897043

    Article  Google Scholar 

  39. Kramadhati S, Thyagarajan K (2013) Optical properties of pure and doped (KnO3 & MgCl2) polyvinyl alcohol polymer thin films. Int J Eng Res Dev 6(8):15–18

    Google Scholar 

  40. Habeeb MA (2014) Dielectric and optical properties of (PVAc–PEG-Ber) biocomposites. J Eng Appl Sci 9(4):102–108. https://doi.org/10.36478/jeasci.2014.102.108

    Article  Google Scholar 

  41. Mohan VM, Bhargav PB, Raja V, Sharma AK, Narasimha Rao VVR (2007) Optical and electrical properties of pure and doped PEO polymer electrolyte films. Soft Mater 5(1):33–46. https://doi.org/10.1080/15394450701405291

    Article  CAS  Google Scholar 

  42. Devi CU, Sharma AK, Rao V (2002) Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater Lett 56(3):167–174. https://doi.org/10.1016/S0167-577X(02)00434-2

    Article  CAS  Google Scholar 

  43. Mahdi SM, Habeeb MA (2022) Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications. Opt Quantum Electron 54(12):854. https://doi.org/10.1007/s11082-022-04267-6

    Article  CAS  Google Scholar 

  44. Prabhu YT, Rao KV, Siva Kumari B, Kumar VSS, Pavani T (2015) synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett 5(2):85–92. https://doi.org/10.1007/s40089-015-0141-z

    Article  CAS  Google Scholar 

  45. Habeeb MA, Jaber ZS (2022) Enhancement of structural and optical properties of CMC/PAA blend by addition of zirconium carbide nanoparticles for optics and photonics applications. East Eur J Phys 4:176–182. https://doi.org/10.26565/2312-4334-2022-4-18

    Article  Google Scholar 

  46. Aslinjensipriya A, SylviaReena R, GraceInfantiya S, Ragu R, Das SJ (2022) Uncovering the replacement of Zn2+ ions on nano-structural, opto/magneto/electrical, antibacterial and antifungal attributes of nickel oxide nanoparticles via sol–gel strategy. J Solid State Chem 311:123146. https://doi.org/10.1016/j.jssc.2022.123146

    Article  CAS  Google Scholar 

  47. Aslinjensipriya A, Reena RS, Ragu R, Infantiya SG, Mangalam G, Raj CJ, Das SJ (2022) Exploring the influence of tin in micro-structural, magneto-optical and antimicrobial traits of nickel oxide nanoparticles. Surf Interfaces 28:101605. https://doi.org/10.1016/j.surfin.2021.101605

    Article  CAS  Google Scholar 

  48. Jeronsi JE, Ragu R, Sowmya R, Mary AJ, Das SJ (2020) Comparative investigation on Camellia Sinensis mediated green synthesis of Ag and Ag/GO nanocomposites for its anticancer and antibacterial efficacy. Surf Interfaces 21:100787. https://doi.org/10.1016/j.surfin.2020.100787

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgments to University of Babylon.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shaimaa Mazhar Mahdi and Majeed Ali Habeeb. The first draft of the manuscript was written by Majeed Ali Habeeb, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

The Research is not involving the studies on human or their data.

Consent to participate

Consent.

Consent for publication

Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, S.M., Habeeb, M.A. Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym. Bull. 80, 12741–12760 (2023). https://doi.org/10.1007/s00289-023-04676-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04676-x

Keywords

Navigation