Skip to main content
Log in

6-T and 7-T SRAM CELL Design Using Doping-Less Charge Plasma TFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Charge plasma based doping-less tunnel FETs (DLTFETs) are attracting attention for providing reduced leakage currents and high ION/IOFF ratio. In this work, a new GaAs based gate stack charge plasma doping-less tunnel FET (GaAs based GSDLTFET) has been proposed. The simulation results show that the proposed device gives higher ION/IOFF ratio in comparison to DLTFETs due to high mobility of the GaAs substrate. Various SRAM circuits have been designed and analyzed using DLTFET and GaAs based GSDLTFET viz. 6 T standard SRAM, 6 T TFET SRAM and 7 T TFET SRAM. The circuit analysis shows that SRAM cell designed using GaAs based GSDLTFET provides better noise margins in comparison to DLTFET based SRAMs due to high ION/IOFF ratio. Standby leakage power is also reduced in DLTFETs as compared to CMOS. Due to the enhanced noise margins and reduced leakage power our proposed GaAs based GSDLTFET can be used to design energy- efficient memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu C (1983), “Hot-electron effects in MOSFETs”, Electron Devices Meeting, 1983 International. IEEE

  2. Savvas G (1986) Chamberlain and Sannnasi Ramanan, “drain-induced barrier-lowering analysis in VSLI MOSFET devices using two-dimensional numerical simulations”. IEEE Trans Electron Devices 33(11):1745–1753

    Article  Google Scholar 

  3. Liu Z-H, Hu C, Huang J-H, Chan T-Y, Jeng M-C, Ping KKO, Cheng YC (1993) Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans Electron Devices 40(1):86–95

    Article  Google Scholar 

  4. Chan TY, Chen , KO PK, Hu C (1987) The impact of gate-induced drain leakage current on MOSFET scaling”, Electron Devices Meeting, 1987 International. IEEE

  5. Konstantin K. Likharev, “ Single-electron devices and their applications”, Proc IEEE 87.4 (1999): 606–632

  6. Zhang XF, Zhang XB, Van Tendeloo G, Amelinckx S, Op de Beeck M, Van Landuyt J (1993) Carbon nano-tubes; their formation process and observation by electron microscopy. J Cryst Growth 130(3–4):368–382

    Article  CAS  Google Scholar 

  7. Yang F-L, Chen H-Y, Chen F-C, Chan Y-L, Yang K-N, Chen C-J, Tao H-J, Choi Y-K, Liang M-S, Hu C (2002) 35 nm CMOS FinFETs, VLSI Technology”, 2002. Digest of Technical Papers. 2002 Symposium on. IEEE

  8. Bhuwalka KK, Sedlmaier S, Ludsteck AK, Tolksdorf C, Schulze J, Eisele I (2004) Vertical tunnel field-effect transistor. IEEE Trans Electron Devices 51(2):279–282

    Article  CAS  Google Scholar 

  9. Adrian M, Ionescu HR (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337

    Article  Google Scholar 

  10. Alan C, Seabaugh QZ (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98(12):2095–2110

    Article  Google Scholar 

  11. Boucart K, Ionescu AM (2007) Double-gate Tunnel FET with high-κ gate dielectric. IEEE Trans Electron Dev, 54.7 54:1725–1733

    Article  CAS  Google Scholar 

  12. Kuo-Hsing Kao C, Verhulst AS, Vandenberghe WG, Sorée B, Groeseneken G, Demeyer K (2012) Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices 59:292–301

    Article  Google Scholar 

  13. Narang R, Manoj S, Gupta RS, Gupta M (2013) Device and circuit level performance Comparisonof tunnel FET architectures and impact of heterogeneous gate dielectric. J Semiconduct Technol Sci 13:224–236

    Article  Google Scholar 

  14. Shih C-H, Chien ND (2011) Sub-10-nm tunnel field-effect transistor with graded Si/GeHeterojunction. IEEE Electron Device Lett 32:1498–1500

    Article  CAS  Google Scholar 

  15. Ganapathi K, Salahuddin S (2011) Heterojunction vertical band-to-band tunneling transistors for steep sub-threshold swing and high ON current. IEEE Electron Device Lett 32:689–691

    Article  Google Scholar 

  16. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices 57:2317–2319

    Article  Google Scholar 

  17. Jagadesh Kumar M (2013) Sindhu Janardhanan, “doping-less tunnel field effect transistor: design and investigation”. IEEE Trans Electron Devices 60(10):3285–3290

    Article  Google Scholar 

  18. Anand S, Sarin RK (2016) Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform. Superlattice Microst 97:60–69

    Article  CAS  Google Scholar 

  19. Raymond JE (2008) Hueting, Bijoy Rajasekharan, Cora Salm, Jurriaan Schmitz, “the charge plasma pn diode”. IEEE Electron Device lett 29(12):1367–1369

    Article  Google Scholar 

  20. Rajasekharan B, Hueting RJE, Salm C, van Hemert T, Wolters RAM, Schmitz J (2010) Fabrication and characterization of the charge-plasma diode. IEEE electron Device Lett 31(6):528–530

    Article  CAS  Google Scholar 

  21. Cho YJYS, Seo JH Man Kang, Byung-Gook Park and Jung-Hee Lee, Compound semiconductor tunneling field-effect transistor based on Ge/GaAs heterojunction with tunneling boost layer for high-performance operation. Japanese Journal of Applied Physics 52.4S(2013):04CC04

  22. Cheng B, Cao M, Rao R, Inani A, Voorde PV, Greene WM, Stork JMC, Yu Z, Zeitzoff PM, Woo JCS (1999) The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans Electron Devices 46(7):1537–1544

    Article  CAS  Google Scholar 

  23. Stephany R, Anne K, Bell J, Cheney G., Eno J, Hoeppner G, Joe G, Kaye R, Lear J, Litch T, J. Meyer, Montanaro J, K. Patton, T. Pham, Reis R, Silla M, J. Slaton, Snyder K, Witek R (1998) A 200MHz 32b 0.5W CMOS RISC Microprocessor," in ISSCC Digest of Technical Papers, pp.15.5–1 - 15.5-2

  24. Igura H, Naito Y, Kazama K, Kuroda I, Motomura M, Yamashina M (1998) An 800MOPS 100mW 1.5V Parallel DSP for Mobile Multimedia Processing. ISSCC Digest of Technical Papers, pp 18.3–1–18.3-2

    Google Scholar 

  25. Hoefflinger, Bernd. "ITRS: The international technology roadmap for semiconductors Chips 2020. Springer, Berlin, 2011. 161–174

  26. Sunny A, Intekhab Amin S, R. K. (2016) Sarin, “analog performance investigation of dual electrode based doping-less tunnel FET”. J Comput Electron 15(1):94–103

    Article  Google Scholar 

  27. Sunny Anand RK (2016) Sarin, “an analysis on Ambipolar reduction techniques for charge plasma based tunnel field effect transistors”. J Nanoelectron Optoelectron 11(4):543–550

    Article  Google Scholar 

  28. ATLAS Users guide, SILVACO International, Version 5.14.0.R, 2010

  29. Mookerjea S, Mohata D, Krishnan R, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu and Datta S (2009) Experimental demonstration of 100nm channel length In 0.53 Ga 0.47 As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications." 2009 IEEE International Electron Devices Meeting (IEDM). IEEE

  30. Singh J, Ramakrishnan K, Mookerjea S, Datta S, Vijaykrishnan N, Pradhan D, “A novel si-tunnel FET based SRAM design for ultra low-power 0.3 VV DD applications”, Proceedings of the 2010 Asia and South Pacific design automation conference. IEEE Press, 2010

  31. Kim D, Lee Y, Cai J, Lauer I, Chang L, Koester SJ, Sylvester D, Blaauw D (2009) “Low power circuit design based on heterojunction tunneling transistors (HETTs)”, Proceedings of the 2009 ACM/IEEE international symposium on Low power electronics and design. ACM

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Anand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Sarin, R.K., Anand, S. et al. 6-T and 7-T SRAM CELL Design Using Doping-Less Charge Plasma TFET. Silicon 13, 4091–4100 (2021). https://doi.org/10.1007/s12633-020-00713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00713-w

Keywords

Navigation