Skip to main content
Log in

Synthesis and Characterization of the First Generation of Polyamino-Ester Dendrimer-Grafted Magnetite Nanoparticles from 3-Aminopropyltriethoxysilane (APTES) via the Convergent Approach

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

3-aminopropyltriethoxysilane was acrylated using the Michael addition reaction. After that, magnetite nanoparticles were coupled with the silane dispersion. The structure of poly(amino-ester) dendrons grafted on the surface of magnetite nanoparticles was characterized by FTIR spectroscopy and thermogravimetric analysis. Generally, in the convergent method structural control is better than in the divergent one due to its relatively low number of reactions at each growth step. Therefore, the number of dendrons grafted onto the surface of magnetite nanoparticles increase via convergent synthesis. Moreover, the analysis showed that the prepared nanoparticles had nanometric size, low polydispersity and high yield.

A Convergent Approach for the Preparation of the First Generation of Polyamino-Ester Dendrimer-Grafted Magnetite Nanoparticles from 3-Aminopropyltriethoxysilane (APTES)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khodadust R, Unsoy G, Yalcın S, Gunduz G, Gunduz U (2013) PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J Nanopart Res 15(3):1–13

    Article  Google Scholar 

  2. Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101(12):3819–3868

    Article  CAS  Google Scholar 

  3. Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101(9):2991–3024

    Article  CAS  Google Scholar 

  4. Adronov A, Fréchet JM (2000) Light-harvesting dendrimers. Chem Commun 18:1701–1710

    Article  Google Scholar 

  5. Hecht S, Fréchet JM (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed 40(1):74–91

    Article  CAS  Google Scholar 

  6. Florence AT, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 50:S69–S89

    Article  CAS  Google Scholar 

  7. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57 (15):2177–2202

    Article  Google Scholar 

  8. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10 (1):35–43

    Article  CAS  Google Scholar 

  9. Wilhelm C, Gazeau F (2009) Magnetic nanoparticles: internal probes and heaters within living cells. J Magn Magn Mater 321(7):671–674

    Article  CAS  Google Scholar 

  10. Wilhelm C, Gazeau F (2008) Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29 (22):3161–3174

    Article  CAS  Google Scholar 

  11. Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26):3583–3590

    Article  CAS  Google Scholar 

  12. Bai X, Son SJ, Zhang S, Liu W, Jordan EK, Frank JA, Venkatesan T, Lee SB (2008) Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling. Nanomedicine 3(2):163–174

    Article  CAS  Google Scholar 

  13. Jang J, Lim H (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94(2):148–158

    Article  CAS  Google Scholar 

  14. Yallapu MM, Foy SP, Jain TK, Labhasetwar V (2010) PEG-Functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res 27(11):2283–2295

    Article  CAS  Google Scholar 

  15. Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1):264–271

    Article  CAS  Google Scholar 

  16. Kim J-E, Shin J-Y, Cho M-H (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86(5):685–700

    Article  CAS  Google Scholar 

  17. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2(1):23– 30

    Article  Google Scholar 

  18. Wang B, Wei Q, Qu S (2013) Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int J Electrochem Sci 8:3786–3793

    CAS  Google Scholar 

  19. Wang H, Zhou Y, Guo Y, Liu W, Dong C, Wu Y, Li S, Shuang S (2012) β-cyclodextrin/ Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens Actuators, B 163 (1):171–178

    Article  CAS  Google Scholar 

  20. Zhou Y, Wang S, Xie K, Dai Y, Ma W (2011) Versatile functionalization of Fe3O4 nanoparticles via RAFT polymerization and click chemistry. Appl Surf Sci 257(24):10384–10389

    Article  CAS  Google Scholar 

  21. Borlido L, Azevedo A, Roque A, Aires-Barros M (2013) Magnetic separations in biotechnology. Biotechnol Adv 31(8):1374– 1385

    Article  CAS  Google Scholar 

  22. Kassaee M, Masrouri H, Movahedi F (2011) Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl Catal A 395(1):28–33

    Article  CAS  Google Scholar 

  23. Sedlák M, Bhosale DS, Beneš L, Palarčík J, Kalendová A, Královec K, Imramovský A (2013) Synthesis and characterization of a pH-sensitive conjugate of isoniazid with Fe3O4 @SiO2 magnetic nanoparticles. Bioorg Med Chem Lett 23(16):4692– 4695

    Article  Google Scholar 

  24. Wang L, Sun Y, Wang J, Wang J, Yu A, Zhang H, Song D (2011) Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids Surf B 84(2):484–490

    Article  CAS  Google Scholar 

  25. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    Article  CAS  Google Scholar 

  26. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  Google Scholar 

  27. Du X, He J, Zhu J, Sun L, An S (2012) Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl Surf Sci 258(7):2717–2723

    Article  CAS  Google Scholar 

  28. Pourjavadi A, Hosseini SH, Hosseini ST, Aghayeemeibody SA (2012) Magnetic nanoparticles coated by acidic functionalized poly (amidoamine) dendrimer: effective acidic organocatalyst. Catal Commun 28:86–89

    Article  CAS  Google Scholar 

  29. Dayyani N, Khoee S, Ramazani A (2015) Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur J Med Chem 98:190–202

    Article  CAS  Google Scholar 

  30. Sadri F, Ramazani A, Massoudi A, Khoobi M, Tarasi R, Shafiee A, Azizkhani V, Dolatyari L, Joo SW (2014) Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem Lett Rev 7(3):257–264

    Article  CAS  Google Scholar 

  31. Sadri F, Ramazani A, Massoudi A, Khoobi M, Azizkhani V, Tarasi R, Dolatyari L, Min B -K (2014) Magnetic CoFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. Bull Korean Chem Soc 35(7):2029–2032

    Article  CAS  Google Scholar 

  32. Sadri F, Ramazani A, Massoudi A, Khoobi M, Joo S (2015) Magnetic CuFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. BulgChem Commun 47(2):539–546

    Google Scholar 

  33. Ramazani A, Sadri F, Massoudi A, Khoobi M, Joo SW, Dolatyari L, Dayyani N (2015) Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. Iran J Catal 5(3):285–291

    Google Scholar 

  34. Pan B-F, Gao F, Gu H-C (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. J Colloid Interface Sci 284(1):1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ramazani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayyani, N., Ramazani, A., Khoee, S. et al. Synthesis and Characterization of the First Generation of Polyamino-Ester Dendrimer-Grafted Magnetite Nanoparticles from 3-Aminopropyltriethoxysilane (APTES) via the Convergent Approach. Silicon 10, 595–601 (2018). https://doi.org/10.1007/s12633-016-9497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9497-6

Keywords

Navigation