Skip to main content

Advertisement

Log in

Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) represent a subclass within the overall category of nanomaterials and are widely used in many applications, particularly in the biomedical sciences such as targeted delivery of drugs or genes, in magnetic resonance imaging, and in hyperthermia (treating tumors with heat). Although the potential benefits of MNPs are considerable, there is a distinct need to identify any potential toxicity associated with these MNPs. The potential of MNPs in drug delivery stems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MNPs generated by different surface coatings. These surface modifications alter the particokinetics and toxicity of MNPs by changing protein–MNP or cell–MNP interactions. This review contains current advances in MNPs for drug delivery and their possible organ toxicities associated with disturbance in body iron homeostasis. The importance of protein–MNP interactions and various safety considerations relating to MNP exposure are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648

    PubMed  CAS  Google Scholar 

  • Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    Article  PubMed  CAS  Google Scholar 

  • Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44(10):903–913

    Google Scholar 

  • Andrews PA (1999) Disorders of iron metabolism. N Engl J Med 342(17):1986–1995

    Article  Google Scholar 

  • Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, Saini S, Maravilla KR, Feldman DE, Schmiedl UP, Brunberg JA, Francis IR, Harms SE, Som PM, Tempany CM (2003) Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study1. Radiology 228(3):777–788

    Article  PubMed  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Babincova M, Babinec P (2009) Magnetic drug delivery and targeting: principles and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153(4):243–250

    PubMed  CAS  Google Scholar 

  • Babincová M, Altanerová V, Lampert M, Altaner C, Machová E, Srámka M, Babinec P (2000) Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z Naturforsch C 55(3–4):278–281

    PubMed  Google Scholar 

  • Barisani D, Conte D (2002) Transferrin receptor 1 (TfR1) and putative stimulator of Fe transport (SFT) expression in iron deficiency and overload: an overview. Blood Cells Mol Dis 29(3):498–505

    Article  PubMed  CAS  Google Scholar 

  • Boyer C, Whittaker M, Bulmus V, Liu J, Davis T (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPGA Mater 2(1):23–30

    Article  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (2009) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326

    Article  CAS  Google Scholar 

  • Britton RS (1996) Metal-induced hepatotoxicity. Semin Liver Dis 16(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199

    Article  PubMed  CAS  Google Scholar 

  • Brzozowska M, Krysinski P (2009) Synthesis and functionalization of magnetic nanoparticles with covalently bound electroactive compound doxorubicin. Electrochim Acta 54(22):5065–5070

    Article  CAS  Google Scholar 

  • Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, Chiang LY (1998) Acute and subacute toxicity study of water-soluble polyalkylsulfonated C-60 in rats. Toxicol Pathol 26(1):143–151

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Wu H, Han D, Xie C (2006) Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett 231(2):169–175

    Article  PubMed  CAS  Google Scholar 

  • Chen BA, Jin N, Wang J, Ding J, Gao C, Cheng J, Xia G, Gao F, Zhou Y, Chen Y, Zhou G, Li X, Zhang Y, Tang M, Wang X (2010) The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice. Int J Nanomed 7(5):593–599

    Article  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  PubMed  CAS  Google Scholar 

  • Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ (2010) Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci USA 107(18):8346–8351

    Article  PubMed  CAS  Google Scholar 

  • Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  PubMed  CAS  Google Scholar 

  • Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, Eberbeck D, Bittmann I, Bergemann C, Weyh T, Trahms L, Rosenecker J, Rudolph C (2007) Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2(8):495–499

    Article  PubMed  Google Scholar 

  • Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wires Nanomed Nanobiotechnol 1(6):583–609

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • Deka SR, Quarta A, Di Corato R, Riedinger A, Cingolani R, Pellegrino T (2011) Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale 3(2):619–629

    Article  PubMed  CAS  Google Scholar 

  • Di HW, Luo YL, Xu F, Chen YS, Nan YF (2011) Fabrication and caffeine release from Fe3O4/P(MAA-co-NVP) magnetic microspheres with controllable core-shell architecture. J Biomater Sci Polym Ed 22(4–6):557–676

    Article  PubMed  CAS  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    Article  PubMed  CAS  Google Scholar 

  • Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P (2002) Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem Int Ed Engl 41(22):4286–4289

    Article  PubMed  CAS  Google Scholar 

  • Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science 303(5659):821–823

    Article  PubMed  CAS  Google Scholar 

  • Eaton JW, Qian M (2002) Molecular bases of cellular iron toxicity. Free Radic Biol Med 32(9):833–840

    Article  PubMed  CAS  Google Scholar 

  • Elias A, Tsourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hepatol Am Soc Hematol Educ Program 2009(1):720–726

  • Fattahi H, Laurent S, Liu F, Arsalani N, Vander Elst L, Muller RN (2011) Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine 6(3):529–544

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Liu H, Zhang L, Bhakoo K, Lu L (2010) An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids. Nanotechnology 21(39):395101. doi:10.1088/0957-4484/21/39/395101

    Google Scholar 

  • Feng J, Liu H, Bhakoo KK, Lu L, Chen Z (2011) A metabonomic analysis of organ specific response to USPIO administration. Biomaterials 32(27):2558–2569

    Article  CAS  Google Scholar 

  • Fernandez-Pacheco R, Marquina C, Valdivia JG, Gutierrez M, Romero MS, Cornudella R, Laborda A, Viloria A, Higuera T, Garcia A, de Jalon JAG, Ibarra MR (2007) Magnetic nanoparticles for local drug delivery using magnetic implants. J Magn Magn Mater 311(1):318–322

    Article  CAS  Google Scholar 

  • Ferrari M (2005a) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  • Ferrari M (2005b) Nanovector therapeutics. Curr Opin Chem Biol 9(4):343–346

    Article  PubMed  CAS  Google Scholar 

  • Fleming RE, Bacon BR (2005) Orchestration of iron homeostasis. N Engl J Med 352(17):1741–1744

    Article  PubMed  CAS  Google Scholar 

  • Frank MM, Fries LF (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12(9):322–326

    Article  PubMed  CAS  Google Scholar 

  • Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, Macfelda K (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22(6):843–850

    Article  PubMed  CAS  Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32(2):121–140

    Article  PubMed  CAS  Google Scholar 

  • Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77(3):311–319

    PubMed  Google Scholar 

  • Gersting SW, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C, Reinhardt D, Rosenecker J (2004) Gene delivery to respiratory epithelial cells by magnetofection. J Gene Med 6(8):913–922

    Article  PubMed  CAS  Google Scholar 

  • Gordon T, Kannel WB, Hjortland MC, McNamara PM (1978) Menopause and coronary heart-disease—Framingham study. Ann Intern Med 89(2):157–161

    PubMed  CAS  Google Scholar 

  • Gould P (2006) Nanomagnetism shows in vivo potential. Nano Today 1(4):34–39

    Article  Google Scholar 

  • Graham RM, Chua AC, Herbison CE, Olynyk JK, Trinder D (2007) Liver iron transport. World J Gastroenterol 13(35):4725–4736

    PubMed  CAS  Google Scholar 

  • Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293(1):455–463

    Article  CAS  Google Scholar 

  • Griffin JL, Walker LA, Troke J, Osborn D, Shore RF, Nicholson JK (2000) The initial pathogenesis of cadmium induced renal toxicity. FEBS Lett 478(1–2):147–150

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2(1):23–39

    Article  CAS  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Persp 114(12):1818–1825

    CAS  Google Scholar 

  • Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22(2):147–155

    Article  PubMed  Google Scholar 

  • Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6(5):1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Harivardhan Reddy L, Sharma RK, Chuttani K, Mishra AK, Murthy RS (2005) Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 105(3):185–198

    Article  PubMed  CAS  Google Scholar 

  • Heckl S (2007) Future contrast agents for molecular imaging in stroke. Curr Med Chem 14(16):1713–1728

    Article  PubMed  CAS  Google Scholar 

  • Herrington DM, Reboussin DM, Brosnihan KB, Sharp PC, Shumaker SA, Snyder TE, Furberg CD, Kowalchuk GJ, Stuckey TD, Rogers WJ, Givens DH, Waters D (2000) Effects of estrogen replacement on the progression of coronary–artery atherosclerosis. N Engl J Med 343(8):522–529

    Article  PubMed  CAS  Google Scholar 

  • Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44(10):875–882

    Google Scholar 

  • Hofmann-Amtenbrink M, Von Rechenberg B, Hofmann H (2009) Superparamagnetic nanoparticles for biomedical applications, vol 37. Trans Research Network, Kerala

    Google Scholar 

  • Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, Wang JL, Liu HM (2008) Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed 21(8):820–829

    Article  PubMed  CAS  Google Scholar 

  • Hu YL, Gao JQ (2010) Potential neurotoxicity of nanoparticles. Int J Pharm 394(1–2):115–121

    Article  PubMed  CAS  Google Scholar 

  • Hua MY, Yang HW, Chuang CK, Tsai RY, Chen WJ, Chuang KL, Chang YH, Chuang HC, Pang ST (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31(28):7355–7363

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12):7151–7160

    Article  PubMed  CAS  Google Scholar 

  • Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  PubMed  CAS  Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327

    Article  PubMed  CAS  Google Scholar 

  • Jeong JM, Chung JK (2003) Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Cancer Biother Radiopharm 18(5):707–717

    Article  PubMed  CAS  Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225(1–2):118–126

    Article  CAS  Google Scholar 

  • Karapidaki I, Bakopoulou A, Papageorgiou A, Iakovidou Z, Mioglou E, Nikolaropoulos S, Mourelatos D, Lialiaris T (2009) Genotoxic, cytostatic, antineoplastic and apoptotic effects of newly synthesized antitumour steroidal esters. Mutat Res-Genet Toxicol Environ Mutag 675(1–2):51–59

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118

    Article  PubMed  CAS  Google Scholar 

  • Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Del 8(3):343–357

    Article  CAS  Google Scholar 

  • Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S (2011) Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 7(12):1683–1689

    Article  PubMed  CAS  Google Scholar 

  • Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, Ellenbogen RG, Olson JM, Zhang M (2009) PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19(14):2244–2251

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006a) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, Lee KH, Sohn BH, Park SB, Lee JK, Cho MH (2006b) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326

    Article  PubMed  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010a) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Lim HT, Minai-Tehrani A, Kwon JT, Shin JY, Woo CG, Choi M, Baek J, Jeong DH, Ha YC, Chae CH, Song KS, Ahn KH, Lee JH, Sung HJ, Yu IJ, Beck GR Jr, Cho MH (2010b) Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J Toxicol Environ Health A 73(21–22):1530–1543

    Article  PubMed  CAS  Google Scholar 

  • Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792

    Article  PubMed  CAS  Google Scholar 

  • Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki K, Nihei Y, Takeda K (2008) The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro 22(8):1825–1831

    Article  PubMed  CAS  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2006) The blood–brain barrier and brain drug delivery. J Nanosci Nanotechnol 9(10):2712–2735

    Article  CAS  Google Scholar 

  • Krötz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C (2003) Magnetofection—a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7(5):700–710

    Article  PubMed  CAS  Google Scholar 

  • Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50(1):1–6

    Article  PubMed  Google Scholar 

  • Kwon JT, Kim DS, Minai-Tehrani A, Hwang SK, Chang SH, Lee ES, Xu CX, Lim HT, Kim JE, Yoon BI, An GH, Lee KH, Lee JK, Cho MH (2009) Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice. J Occup Health 51(5):423–431

    Article  PubMed  CAS  Google Scholar 

  • Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Sadeghiani N, Buske N, Morais PC, Lacava ZGM (2004) Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 272–276:2434–2435

    Article  CAS  Google Scholar 

  • Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33(2):94–101

    Article  PubMed  CAS  Google Scholar 

  • Lankester KJ, Maxwell RJ, Pedley RB, Dearling JL, Qureshi UA, El-Emir E, Hill SA, Tozer GM (2007) Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I–A5B7, even at doses that are sub-optimal for vascular shut-down. Int J Oncol 30(2):453–460

    PubMed  CAS  Google Scholar 

  • Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23(4):2158–2168

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177(2):490–494

    Article  CAS  Google Scholar 

  • Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Jeong HJ, Kim SL, Kim EM, Kim DW, Lim ST, Jang KY, Jeong YY, Nah JW, Sohn MH (2009) SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes. Int J Pharm 371(1–2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  PubMed  CAS  Google Scholar 

  • Li C, Taneda S, Taya K, Watanabe G, Li X, Fujitani Y, Nakajima T, Suzuki AK (2009) Effects of in utero exposure to nanoparticle-rich diesel exhaust on testicular function in immature male rats. Toxicol Lett 185(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376

    Article  PubMed  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL, Wang LF (2009) Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 30(28):5114–5124

    Article  PubMed  CAS  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  PubMed  CAS  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Yang S, Ng KM, Su CH, Yeh CS, Wu YN, Shieh DB (2006) Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application. Nanotechnology 17(23):5812–5820

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Lunov O, Syrovets T, Buchele B, Jiang X, Rocker C, Tron K, Nienhaus GU, Walther P, Mailander V, Landfester K, Simmet T (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31(19):5063–5071

    Article  PubMed  CAS  Google Scholar 

  • Mah C, Fraites TJ Jr, Zolotukhin I, Song S, Flotte TR, Dobson J, Batich C, Byrne BJ (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6(1):106–112

    Article  PubMed  CAS  Google Scholar 

  • McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3(2):169–180

    CAS  Google Scholar 

  • McFerrin MB, Sontheimer H (2006) A role for ion channels in glioma cell invasion. Neuron Glia biol 2(1):39–49

    Article  PubMed  Google Scholar 

  • Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377

    Article  PubMed  CAS  Google Scholar 

  • Ming W, Lin S, Wei B, Shao-lin L, Bi-bo L (2007) Preparation of superparamagnetic iron oxide nanoparticles and its acute toxicity to mice. Acad J Second Mil Med Univ 28(10):1104–1108

    Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Article  PubMed  CAS  Google Scholar 

  • Monge-Fuentes V, Garcia MP, Tavares MC, Valois CR, Lima EC, Teixeira DS, Morais PC, Tomaz C, Azevedo RB (2011) Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.). Nanomedicine 6(4):1–16

    Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Article  CAS  Google Scholar 

  • Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57(4):785–796

    Article  PubMed  Google Scholar 

  • Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vähäkangas KH (2008) Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 26(2):130–137

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774

    Article  PubMed  CAS  Google Scholar 

  • Nemmar A, Hoylaerts MF, Hoet PH, Vermylen J, Nemery B (2003) Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186(1):38–45

    Article  PubMed  CAS  Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  CAS  Google Scholar 

  • Nicod LP (1999) Pulmonary defence mechanisms. Respiration 66(1):2–11

    Article  PubMed  CAS  Google Scholar 

  • Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrence TS, Becker CW, Balogh L, Khan MK (2004) 3H dendrimer nanoparticle organ/tumor distribution. Pharm Res 21(3):476–483

    Article  PubMed  CAS  Google Scholar 

  • Noori A, Parivar K, Modaresi M, Messripour M, Yousefi MH, Amiri GR (2011) Effect of magnetic iron oxide nanoparticles on pregnancy and testicular development of mice. Afr J Biotechnol 10(7):1221–1227

    CAS  Google Scholar 

  • Ong WY, Halliwell B (2004) Iron, atherosclerosis, and neurodegeneration—a key role for cholesterol in promoting iron-dependent oxidative damage? Ann NY Acad Sci 1012:51–64

    Article  PubMed  CAS  Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582

    Article  CAS  Google Scholar 

  • Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2(3):145–150

    Article  PubMed  CAS  Google Scholar 

  • Plank C (2008) Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung. Trends Biotechnol 26(2):59–63

    Article  PubMed  CAS  Google Scholar 

  • Pouponneau P, Leroux JC, Soulez G, Gaboury L, Martel S (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486

    Article  PubMed  CAS  Google Scholar 

  • Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142(1):108–121

    Article  PubMed  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  PubMed  CAS  Google Scholar 

  • Reichert JM (2008) Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9(6):423–430

    Article  PubMed  CAS  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J Biomed Mater Res 30(1):53–65

    Article  PubMed  CAS  Google Scholar 

  • Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596

    Article  CAS  Google Scholar 

  • Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res 7(1):1–13

    Article  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release 108(2–3):193–214

    Article  PubMed  CAS  Google Scholar 

  • Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN (2004) Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 3(4):379–398

    Article  PubMed  CAS  Google Scholar 

  • Saunders M (2009) Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):671–684

    Article  PubMed  CAS  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109

    Article  PubMed  CAS  Google Scholar 

  • Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, Chen X, Wu AM, Weiss S, Gambhir SS (2007) MicroPET-based biodistribution of quantum dots in living mice. J Nucl Med 48(9):1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568

    Article  PubMed  CAS  Google Scholar 

  • Shander A, Cappellini MD, Goodnough LT (2009) Iron overload and toxicity: the hidden risk of multiple blood transfusions. Vox Sang 97(3):185–197

    Article  PubMed  CAS  Google Scholar 

  • Shapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14(3):150–163

    Article  PubMed  CAS  Google Scholar 

  • Shen CC, Wang CC, Liao MH, Jan TR (2011) A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomed 6:1229–1235

    CAS  Google Scholar 

  • Shi D, Bedford NM, Cho HS (2011) Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics. Small 7(18):2549–2567

    Google Scholar 

  • Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009a) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23–24):3926–3933

    Article  PubMed  CAS  Google Scholar 

  • Simberg D, Zhang WM, Merkulov S, McCrae K, Park JH, Sailor MJ, Ruoslahti E (2009b) Contact activation of kallikrein–kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J Control Release 140(3):301–305

    Article  PubMed  CAS  Google Scholar 

  • Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Rohl L, Bjornerud A, Gyldensted C (1999) CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 9(2):342–347

    Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:1–15

    Google Scholar 

  • Singh KP, Panwar P, Kohli P, Sanjesh RS (2011) Liposome-mesoporous silica nanoparticles fused cores: a safer mode of drug carrier. J Biomed Nanotechnol 7(1):60–62

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD, Floreani M, Ceccon M, Facci L, Giusti P (1999) Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin. Ann NY Acad Sci 890(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, Xue JM, Wang S (2010) Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 31(4):769–778

    Article  PubMed  CAS  Google Scholar 

  • Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101(1):4–21

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JL (2003) Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J 145(2):190–194

    Article  PubMed  Google Scholar 

  • Sullivan JL (2004) Is stored iron safe? J Lab Clin Med 144(6):280–284

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Zheng W, Zhang H, Wu T, Yuan H, Yang X, Zhang S (2011) Development of nanoparticle based magnetic resonance colonography. Magn Reson Med 65(3):673–679

    Article  PubMed  Google Scholar 

  • Swai H, Semete B, Kalombo L, Chelule P, Kisich K, Sievers B (2009) Nanomedicine for respiratory diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):255–263

    Article  PubMed  CAS  Google Scholar 

  • Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4(4):357–372

    PubMed  CAS  Google Scholar 

  • Torres Martin de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ (2011) 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 22(3):455–465

    Article  PubMed  CAS  Google Scholar 

  • Valois CR, Braz JM, Nunes ES, Vinolo MA, Lima EC, Curi R, Kuebler WM, Azevedo RB (2010) The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a [beta] 2 integrin-dependent pathway. Biomaterials 31(2):366–374

    Article  PubMed  CAS  Google Scholar 

  • van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G (2011) Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 8(4):1002–1015

    Article  PubMed  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Kievit FM, Sun C, Fang C, Lee JS, Zhang M (2009a) Inhibition of tumor cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5(2):256–264

    Article  PubMed  CAS  Google Scholar 

  • Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M (2009b) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30(4):649–657

    Article  PubMed  CAS  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4:2

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373

    Article  PubMed  CAS  Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118(3):233–243

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Neoh KG, Kang ET, Shuter B (2011a) Multifunctional polyglycerol-grafted FeO@SiO nanoparticles for targeting ovarian cancer cells. Biomaterials 32(8):2166–2173

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Fu CM, Chuang MH, Cham TM, Chung MI (2011b) Magnetically directed targeting aggregation of radiolabelled ferrite nanoparticles. J Nanomater. doi:10.1155/2011/851520

  • Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener PA, Zisch A, Krug HF, von Mandach U (2010) Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118(3):432–436

    Article  PubMed  CAS  Google Scholar 

  • Wong RW, Richa DC, Hahn P, Green WR, Dunaief JL (2007) Iron toxicity as a potential factor in AMD. Retina 27(8):997–1003

    Article  PubMed  Google Scholar 

  • Wuang SC, Neoh KG, Kang ET, Pack DW, Leckband DE (2008) HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials 29(14):2270–2279

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Wang G, Tao K, Li J, Tian Y (2005) Preparation and acute toxicology of nano-magnetic ferrofluid. J Huazhong Univ Sci Technol Med Sci 25(1):59–61

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  CAS  Google Scholar 

  • Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular-weights after intravenous administration to mice. J Pharm Sci 83(4):601–606

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda S, Itoh N, Yoshikawa T, Yanagihara I, Saito S, Tsutsumi Y (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6(5):321–328

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Hu J, Yang D, Long J, Luo G, Jin C, Yu X, Xu J, Wang C, Ni Q (2009) Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomedicine 4(3):317–330

    Article  PubMed  CAS  Google Scholar 

  • Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O (2008) Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci USA 105(2):605–610

    Article  PubMed  CAS  Google Scholar 

  • Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130(28):9006–9012

    Article  PubMed  CAS  Google Scholar 

  • Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem 117(7):1092–1095

    Article  Google Scholar 

  • Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomateriats. Small 2(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • You SA, Wang Q (2005) Ferritin in atherosclerosis. Clin Chim Acta 357(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Misra RD (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 3(6):838–850

    Article  PubMed  CAS  Google Scholar 

  • Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247(2–3):102–111

    Article  PubMed  CAS  Google Scholar 

  • Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, Zhao YL, Chai ZF (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science, and Technology (NRF-2011-0019171 and NRF-2011-0000380). MHC was partially supported by the Research Institute for Veterinary Science, Seoul National University. Ji-Eun Kim and Ji-Young Shin are recipients of Brain Korea 21 Program for Veterinary Science of Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Haing Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JE., Shin, JY. & Cho, MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86, 685–700 (2012). https://doi.org/10.1007/s00204-011-0773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0773-3

Keywords

Navigation