Skip to main content
Log in

PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study focuses on the synthesis and characterization of different generations (G0–G7) of polyamidoamine (PAMAM) dendrimer-coated magnetic nanoparticles (DcMNPs). In this study, superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation method. The synthesized nanoparticles were modified with aminopropyltrimethoxysilane for dendrimer coating. Aminosilane-modified MNPs were coated with PAMAM dendrimer. The characterization of synthesized nanoparticles was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering, and vibrating sample magnetometry (VSM) analyses. TEM images demonstrated that the DcMNPs have monodisperse size distribution with an average particle diameter of 16 ± 5 nm. DcMNPs were found to be superparamagnetic through VSM analysis. The synthesis, aminosilane modification, and dendrimer coating of iron oxide nanoparticles were validated by FTIR and XPS analyses. Cellular internalization of nanoparticles was studied by inverted light scattering microscopy, and cytotoxicity was determined by XTT analysis. Results demonstrated that the synthesized DcMNPs, with their functional groups, symmetry perfection, size distribution, improved magnetic properties, and nontoxic characteristics could be suitable nanocarriers for targeted cancer therapy upon loading with various anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MNPs:

Magnetic nanoparticles, magnetite, Fe3O4

DcMNPs:

Polyamidoamine (PAMAM) dendrimer-coated magnetic nanoparticles (DcMNPs)

APTS:

Aminopropyltrimethoxysilane

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared spectroscopy

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

TGA:

Thermal gravimetric analysis

VSM:

Vibrating sample magnetometry

MS :

Saturated magnetization

References

  • Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750

    Article  CAS  Google Scholar 

  • Arias JL, Gallardo V, Gómez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly(ethyl-2-cyanosilane) nanoparticles with a magnetic core. J Control Release 13:309–321

    Article  Google Scholar 

  • Bazylinski DA (1996) Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem Geol 132:191–198

    Article  CAS  Google Scholar 

  • Boas U, Karlsson AJ, de Waal BF, Meijer EW (2001) Synthesis and properties of new thiourea-functionalized poly(propylene imine) dendrimers and their role as hosts for urea functionalized guests. J Org Chem 66(6):2136–2145

    Article  CAS  Google Scholar 

  • Chou CM, Lien HL (2011) Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J Nanopart Res 13(5):2099–2107

    Article  CAS  Google Scholar 

  • Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11(3):362–371

    CAS  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  CAS  Google Scholar 

  • Durmus Z, Kavas H, Toprak MS, Baykal A, Altınçekiç TG, Aslan A, Bozkurt A, Coşgun S (2009) l-lysine coated iron oxide nanoparticles: synthesis, structual and conductivity characterization. J Alloy Compd 484(1–2):371–376

    Article  CAS  Google Scholar 

  • Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  CAS  Google Scholar 

  • Gao F, Pan BF, Zheng WM, Ao LM, Gu HC (2005) Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles. J Magn Magn Mater 293:48–54

    Article  CAS  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nano Biosci 3:66–73

    Article  Google Scholar 

  • Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM (2006) Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 17:275–283

    Article  CAS  Google Scholar 

  • Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25(6):1085–1087

    Article  CAS  Google Scholar 

  • Hoa LTM, Dung TT, Danh TM, Duc NH, Chien DM (2009) Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. J Phys 187(1):012048. doi:10.1088/1742-6596/187/1/012048

    Google Scholar 

  • Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR Jr, Banaszak-Holl MM (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782

    Article  CAS  Google Scholar 

  • Julian JM, Anderson DG, Brandau AH, McGinn JR, Millon AM (1991) In: Brezinski DR (ed) An infrared spectroscopy atlas for the coatings industry 1 federation of societies for coating technology, 4th edn. Blue Bell, Pennsylvania Vols I and II

    Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  CAS  Google Scholar 

  • Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  Google Scholar 

  • Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JM, Dy EE, Szoka FC (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearingC-26 colon carcinomas. Proc Natl Acad Sci USA 103:16649–16654

    Article  CAS  Google Scholar 

  • Liu WM, Xue YN, He WT, Zhuo RX, Huang SW (2011) Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary complexes: a novel strategy for magnetofection. J Control Release 152:159–160

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518

    Article  CAS  Google Scholar 

  • Majoros IJ, Keszler B, Woehler S, Bull T, Baker JR Jr (2003) Acetylation of poly(amidoamine) dendrimers. Macromolecules 36:5526–5529

    Article  CAS  Google Scholar 

  • Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776

    Article  CAS  Google Scholar 

  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    Article  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  • Matsunaga T, Sato R, Kamiya S, Tanaka T, Takeyama H (1999) Chemiluminescence enzyme immunoassay using protein A-bacterial magnetite complex. J Magn Magn Mater 194:126–131

    Article  CAS  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185

    Article  CAS  Google Scholar 

  • Mornet S, Vekris A, Bonnet J, Duguet E, Grasset F, Choy JH, Portier J (2000) DNA–magnetite nanocomposite materials. Mater Lett 42:183–188

    Article  CAS  Google Scholar 

  • Pan BF, Gao F, Gu HC (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. J Colloid Interface Sci 284(1):1–6

    Article  CAS  Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67:8156–8163

    Article  CAS  Google Scholar 

  • Rahman O, Mohapatra SC, Ahmad S (2012) Fe 3 O 4 inversespinal super paramagnetic nanoparticles. Mater Chem Phys 132:196–202

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Vijayakrishnan V, Schimossek K (1998) Entrapment of lipases in hydrophobic magnetite-containing sol–gel materials: magnetic separation of heterogeneous biocatalysts. J Mol Catal A 134:251–258

    Article  CAS  Google Scholar 

  • Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW (2001) Pharmacokinetics and enhancement patterns of macromolecular MR contrastagents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 46:1169–1173

    Article  CAS  Google Scholar 

  • Shimomura M, Abe T, Sato Y, Oshima K, Yamauchi T, Miyauchi S (2003) Sugar-binding property of magnetite particles modified with dihydroxyborylphenyl groups via graft polymerization of acrylic acid. Polymer 44:3877–3882

    Article  CAS  Google Scholar 

  • Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JR Jr (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer RGD conjugates. Chem Commun (Camb) 14:5739–5741

    Article  Google Scholar 

  • Shukoor MI, Natalio F, Ksenofontov V, Tahir MN, Eberhardt M, Theato P, Schröder HC, Müller WE, Tremel W (2007) Double-stranded RNA polyinosinic polycytidylic acid immobilized onto gamma-Fe2O3 nanoparticles by using a multifunctional polymeric linker. Small 3(8):1374–1378

    Article  CAS  Google Scholar 

  • Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252

    Article  CAS  Google Scholar 

  • Slowing I, Trewyn BG, Lin VS (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793

    Article  CAS  Google Scholar 

  • Stiriba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use indiagnostics and therapy. Angew Chem Int Ed Engl 41:1329–1334

    Article  CAS  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  CAS  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129

    Article  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  • Tang Y, Li YB, Wang B, Lin RY, van Dongen M, Zurcher DM, Gu XY, Banaszak Holl MM, Liu G, Qi R (2012) Efficient in vitro siRNA delivery and intramuscular gene silencing using PEG-modified PAMAM dendrimers. Mol Pharm 9(6):1812–1821

    Article  CAS  Google Scholar 

  • Tanyolaç D, Özdural AR (2000) Preparation of low-cost magnetic nitrocellulose microbeads. React Funct Polym 45:235–242

    Article  Google Scholar 

  • Taylor JI, Hurst CD, Davies MJ, Sachsinger N, Bruce IJ (2000) Application of magnetite and silica–magnetite composites to the isolation of genomic DNA. J Chromatogr A 890:159–166

    Article  CAS  Google Scholar 

  • Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, Baker JR Jr (2004) Invitro targeting of synthesized antibody conjugated dendrimer nanoparticles. Biomacromolecules 5:2269–2274

    Article  CAS  Google Scholar 

  • Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, Baker JR Jr (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48(11):3729–3735

    Article  CAS  Google Scholar 

  • Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26):3583–3590

    Article  CAS  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  • Unsoy G, Yalcın S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964

    Article  Google Scholar 

  • Uzun K, Çevik E, Şenel M, Sözeri H, Baykal A, Abasıyanık FM, Toprak SM (2010) Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. J Nanopart Res 12(8):3057–3067

    Article  CAS  Google Scholar 

  • Wuang SC, Neoh KG, Kang ET, Pack DW, DE Leckband (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17:3354–3362

    Article  CAS  Google Scholar 

  • Zhuo RX, Du B, Lu ZR (1999) In vitro release of 5 fluorouracil with cyclic core dendritic polymer. J Control Release 57:249–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Asst. Prof. Dr. Bora Mavis for FTIR, as well as financial support by TÜBİTAK-2215 (PhD Fellowship for foreign citizens), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rouhollah Khodadust or Ufuk Gunduz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodadust, R., Unsoy, G., Yalcın, S. et al. PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J Nanopart Res 15, 1488 (2013). https://doi.org/10.1007/s11051-013-1488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1488-6

Keywords

Navigation