Skip to main content
Log in

Tribological and Microstructure Examination of Environmental Waste (Marble Dust) Filled Silicon Bronze Alloy for Wear Resistant Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present work, marble dust particulate filled silicon bronze (SiBr) alloy composites were fabricated in five different weight percentages (0 wt.%, 2.5 wt.%, 5 wt.%, 7.5 wt.% and 10 wt.% of MD). The main focus of this work was to study their physical and dry sliding wear behavior for rolling elements. The void contents of the particulate filled alloy composites decreased with the increase in marble dust content in the composites up to 7.5 wt.% of marble dust (MD). Similarly, the hardness of the filled composites showed an increasing trend with the increase in hard marble dust content in the alloy composites i.e. 119.25 Hv to 181.5 Hv for 0 wt.% to 7.5 wt.% addition of MD particulates. However, both the void content and hardness showed inferior properties in higher weight percentages of marble dust content. The Taguchi design of experimental (L 25 orthogonal array) technique was implemented to find out the dry specific wear rate of the unfilled and marble dust filled SiBr alloy composites. A scanning electron microscopy (SEM) study was performed to study the wear mechanism of the worn composites along with atomic force microscopic (AFM) analysis to predict the surface profile of the worn particulate filled alloy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamal M, El-Bediwi A, Lashin AR, El-Zarka AH (2011) Mater Sci Eng A 530:327–332

    Article  CAS  Google Scholar 

  2. Xing B, He X, Wang Y, Yang H, Deng C (2015) J Mater Process Technol 216:28–36

    Article  CAS  Google Scholar 

  3. Sharma SC, Girish BM, Kamath R, Satish BM (1998) Wear 219:162–168

    Article  CAS  Google Scholar 

  4. Yi W, Xu G, Liang L, Jiang K (2015) Mech Syst Signal Process 54-55:259–276

    Article  Google Scholar 

  5. Abdizadeh H, Baghchesara MA (2013) Ceram Int 39:2045–2050

    Article  CAS  Google Scholar 

  6. Paretkar RK, Modak JP, Raarao AV (1996) Wear 197:17–37

    Article  CAS  Google Scholar 

  7. Kiran TS, Prasanna KM, Basavarajappa S, Viswanatha BM (2014) Mater Des 63:294–304

    Article  CAS  Google Scholar 

  8. Modi OP, Prasad BK, Yegneswaran AH, Vaidya ML (1992) Mater Sci Eng A151:235–245

    Article  CAS  Google Scholar 

  9. Deuis RL, Subramanian C, Yellup JM (1997) Compos Sci Technol 57:415–435

    Article  CAS  Google Scholar 

  10. Agarwal BD, Broutman LJ (1990) 2nd. Jhonwieley and Sons, New York

  11. Kumar SS, Devaiah M, SeshuBai V, Rajasekharan T (2012) Ceram Int 38:1139–1147

    Article  Google Scholar 

  12. Siddhartha V, Patnaik A, Bhatt AD (2011) Mater Des 32:615– 627

    Article  CAS  Google Scholar 

  13. Fernandez LE, Borrell A, Salvador MD, Gutierrez-Gonzalez CF (2013) Wear 307:60–67

    Article  Google Scholar 

  14. Singh H, Kumar L, Alam SN (2015) Mater Sci Eng 75

  15. KokM (2005) J Mater Process Technol 161:381–387

    Article  Google Scholar 

  16. Lee CJ, Huang JC, Hsieh PJ (2006) Scr Mater 54:1415– 1420

    Article  CAS  Google Scholar 

  17. Ranganath G, Sharma SC, Krishna M, Muruli MS (2002) J Mater Eng Perform 11:408–413

    Article  CAS  Google Scholar 

  18. Alpas AT, Zhang J (1992) Wear 155:83–104

    Article  CAS  Google Scholar 

  19. Kulkarni MD, Robi PS, Prasad RC, Ramakrishnan P (1996) Mater Trans, JIM 37:223–229

    Article  CAS  Google Scholar 

  20. Kim CK, Park SY (1984) J Korean Inst Met Mater. 22:185–192

    CAS  Google Scholar 

  21. Manohara HR, Chandrashekharaiah TM, Venkateswarlu K, Kori SA (2012) Tribol Int 51:54–60

    Article  CAS  Google Scholar 

  22. Babic M, Slobodan M, Dzunic D, Ilija B, Jeremic B (2010) Tribol Lett 37:401–410

    Article  CAS  Google Scholar 

  23. Sharma SC (2001) Wear 249:1036–1045

    Article  CAS  Google Scholar 

  24. Ilangovan S, Jiten S (2014) Int J Res Eng Technol 3(7):2319– 1163

    Google Scholar 

  25. Zhang S, Wang F (2007) J Mater Process Technol 182:122–127

    Article  CAS  Google Scholar 

  26. Baskaran S, Anandakrishnan V, Duraiselvam M (2014) Mater Des 60:184–192

    Article  CAS  Google Scholar 

  27. Xiu K, Wang HY, Sui HL, Wang Y, Xu CL, Wang JG, Jiang QC (2006) J Mater Sci 41:7052–7058

    Article  CAS  Google Scholar 

  28. Prasad BK (2003) Wear 254:35–46

    Article  CAS  Google Scholar 

  29. Kumar MP, Sadashivappa K, Prabhukumar GP, Basavarajappa S (2006) Mater Sci (Medžiagotyra) 12(3):209–213

    Google Scholar 

  30. Ranganath G, Sharma SC, Krishna M (2001) Wear 251:1408–1413

    Article  Google Scholar 

  31. Krakhmalev PV (2006) Wear 260:450–457

    Article  CAS  Google Scholar 

  32. Prabhudeva MS, Auradib V, Venkateswarluc K, Siddalingswamyd NH (2014) Proced Eng 97:1361–1367

    Article  Google Scholar 

  33. Miyajima T, Iwai Y (2003) Wear 255:606–616

    Article  CAS  Google Scholar 

  34. Mahathanabodee S, alathai T, Raadnui S, Tongsri R, Sombatsompop N (2014) Wear 316:37–48

    Article  CAS  Google Scholar 

  35. Melgarejo ZH, Suárez OM, Kumar S (2006) ScriptaMaterialia 55(1):95–98

    CAS  Google Scholar 

  36. Kok M, Ozdin K (2007) J Mater Process Technol 183:301–309

    Article  Google Scholar 

  37. Chung KH (2014) Int J Precis Eng Manuf 15(10):2219– 2230

    Article  Google Scholar 

  38. Sharma SC, Girish BM, Somashekar DR, Satish BM, Kamath R (1999) Wear 224:89–94

    Article  CAS  Google Scholar 

  39. Bi G, Li Y, Huang X, Chen T, Ma Y, Hao Y (2015) J Magn Alloys 3:63–69

    Article  CAS  Google Scholar 

  40. Manohara HR, Chandrashekharaiah TM, Venkateswarlu K, Kori SA (2012) Tribol Int 51:54–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, S., Bhat, I.K. & Patnaik, A. Tribological and Microstructure Examination of Environmental Waste (Marble Dust) Filled Silicon Bronze Alloy for Wear Resistant Applications. Silicon 9, 249–263 (2017). https://doi.org/10.1007/s12633-015-9401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9401-9

Keywords

Navigation