Skip to main content
Log in

Tribological and Microstructure Behavior of Quicklime (CaO) Filled Silicon Bronze Alloy for Bearing Material

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

CaO filled silicon bronze (SiBr) alloy composites have been fabricated by a high temperature vacuum casting technique at five different weight percentages (0 wt%, 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% of CaO). The void contents, hardness and wear behavior of the CaO filled SiBr alloy composites were studied showing that the addition of particulates in base alloy reduces the void contents from 0.827 % to 0.504 % for 0 wt% to 7.5 wt% of CaO respectively. Similarly, the hardness of CaO filled SiBr alloy composites initially increases from 119.25 Hv to 140.8 Hv on addition of 7.5 % CaO but on further increase in filler content (10 wt%) the hardness decreases to 114.5 HV respectively. The specific wear rate of composite materials for applied load and sliding velocity factors showed surpassing behavior compared to unfilled alloy composites. To get the optimum response of wear behavior of composite materials the Taguchi L25 orthogonal array was applied and the result shows the higher S/N ratio i.e. 106.33 dB. The analysis of variance (ANOVA) result shows that the filler content plays a major effect compared to other factors. The particulate filled composites were examined through scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and atomic force microscopy (AFM) in order to understand the wear mechanism and morphology behavior of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tevfik K, Kara L (2014) Wear 309:21–28

    Article  Google Scholar 

  2. Xia L, Zeng JB, XuJ J (2009) Mater Charact 60:363–369

    Article  CAS  Google Scholar 

  3. Hiraia Y, Satoa T, Fukuia T, Yamadab K, Tanizawab K, Usami H (2013) Procedia Engineering 68:37–42

    Article  Google Scholar 

  4. Tomovic R (2012) Int J Mech Sci 60:23–33

    Article  Google Scholar 

  5. Shaha DS, Patel VN (2014) Procedia Technology 14:447–456

    Article  Google Scholar 

  6. Jiang H, Chen J, Dong G, Liu T, Chen G (2015) Mech Syst Signal Process 52-53:338–359

    Article  Google Scholar 

  7. Ahmadi AM, Petersen D, Howard C (2015) Mech Syst Signal Process 52-53:309–326

    Article  Google Scholar 

  8. Li H, Xu F, Liu H, Zhang X (2015) Measurement 65:1–10

    Article  CAS  Google Scholar 

  9. Mishra SK, Biswas S (2014) SatapathyA. Mater Des 55:958–965

    Article  CAS  Google Scholar 

  10. Seah KHW, Tucci A, Sharma SC, Girish BM, Kamath R (1995) Mater Des 16(6):315–378

    Article  Google Scholar 

  11. Ceschini L, Bosi C, Casagrande A, Garagnani GL (2001) Wear 251:1377–1385

    Article  Google Scholar 

  12. Prabua SS, Prathiba S, Venkatesan N, Sharma A, Ahmed S, Shah YA (2014) In “12th Global Congress on Manufacturing and Management” GCMM - 2014. Procedia Engineering 97:2110–2118

    Article  Google Scholar 

  13. Kiran TS, Prasanna KM, Basavarajappa S, Viswanatha BM (2014) Mater Des 63:294–304

    Article  CAS  Google Scholar 

  14. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley, New York

    Google Scholar 

  15. Kumar SS, Devaiah M, SeshuBai V, Rajasekharan T (2012) Ceramic International 38:1139–1147

    Article  Google Scholar 

  16. Siddhartha V, Patnaik A, Bhatt AD (2011) Mater Des 32:615–627

    Article  CAS  Google Scholar 

  17. Espinosa L, Borrell A, Salvador MD, Gutiérrez-González CF (2013) Wear 307(1-2):60–67

    Article  Google Scholar 

  18. Hayrettin A, Tolga K, Ercan C, Huseyin C (2006) Tribol Int 39:213–220

    Article  Google Scholar 

  19. Aqida SN, Ghazali MI, Hashim J (2004) Jurnal Teknologi 40(A):17–32

    Google Scholar 

  20. Balasubramanian I, Maheswaran R (2015) Mater Des 65:511–520

    Article  CAS  Google Scholar 

  21. Sathiskumar R, Murugan N, Dinaharan I, Vijay SJ (2013) Mater Charact 84:16–27

    Article  CAS  Google Scholar 

  22. Shabani M, Paydar MH, Zamiri R, Goodarzi M, Moshksar MM (2015) J Mater Res Technol 4(2):109–228

    Article  Google Scholar 

  23. Vencla A, Rajkovic V, Zivic F, Mitrovic S, Alagi IC, Jovanovic MT (2013). Applied Surface Science 280:646–654

    Article  Google Scholar 

  24. Pei-peng JIN, Geng CHEN, Li HAN, Jin-hui WANG (2014) Trans Nonferrous Met Soc China 24:49–57

    Article  Google Scholar 

  25. Zhang L, He XB, Qu XH, Duan BH, Lu X, Qin ML (2008) Wear 265:1848–1856

    Article  CAS  Google Scholar 

  26. Chen R, Iwabuchi A, Shimizu T, Shin HS, Mifune H (1997) Wear 213:175–184

    Article  CAS  Google Scholar 

  27. Dinaharan I, Murugan N, Parameswaran S (2011) Mater Sci Eng A528:5733–5740

    Article  Google Scholar 

  28. Baskaran S, Anandakrishnan V, Duraiselvam Muthukannan (2014). Mater Des 60:184–192

    Article  CAS  Google Scholar 

  29. Qing-ju QI (2006) Trans Nonferrous Met SOCC China 161:135–1140

    Google Scholar 

  30. Onat A (2010) J Alloys Compd 489:119–124

    Article  CAS  Google Scholar 

  31. Winzer J, Weiler L, Pouquet J, Rodel J (2011) Wear 271:2845–2851

    Article  CAS  Google Scholar 

  32. Lin N, Xie F, Yang H, Tian W, Wang H, Tang B (2012) Appl Surf Sci 258(11):4960–4970

    Article  CAS  Google Scholar 

  33. Kumar BA, Murugan N, Dinharan I (2014) Trans. Nonferrous Met. Soc. China 24:2785–2795

    Article  CAS  Google Scholar 

  34. Baskaran S, Anandakrishnan V, Duraiselvam M (2014) Mater Des 60:184–192

    Article  CAS  Google Scholar 

  35. Chung KH (2014) Int J Precis Eng Manuf 15(10):2219–2230

    Article  Google Scholar 

  36. Mondal AK, Kumar S (2009) Wear 267:458–466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, S., Patnaik, A. & Bhat, I.K. Tribological and Microstructure Behavior of Quicklime (CaO) Filled Silicon Bronze Alloy for Bearing Material. Silicon 8, 601–616 (2016). https://doi.org/10.1007/s12633-015-9352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9352-1

Keywords

Navigation