Skip to main content
Log in

Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The Li2ZnTi3O8@LiAlO2 was synthesized by a facile high-temperature solid-state route. The LiAlO2 modification does not alter the morphology and particle size of Li2ZnTi3O8 (LZTO). The LiAlO2 modification improves the structure stability, intercalation/deintercalation reversibility of lithium-ions, and electrochemical reaction activity of Li2ZnTi3O8, and promotes the transfer of lithium ions. Benefited from the unique component, Li2ZnTi3O8@LiAlO2 (8wt%) shows a good rate performance with charge capacities of 203.9, 194.8, 187.4, 180.6, and 177.1 mAh·g−1 at 0.5, 1, 2, 3, and 5 C, respectively. Nevertheless, pure LZTO only delivers charge capacities of 134.5, 109.7, 89.4, 79.9, and 72.9 mAh·g−1 at the corresponding rates. Even at large charge—discharge rate, the Li2ZnTi3O8@LiAlO2 (8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g−1 at 5 C after 150 cycles. The introduction of LiAlO2 on the surface of Li2ZnTi3O8 enhances electronic conductivity of the composite, resulting in the good electrochemical performance of Li2ZnTi3O8@LiAlO2 composite. Li2ZnTi3O8@LiAlO2 (8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Q. Cao, X.B. Meng, and A.D. Li, Enhanced electrochemical performances, Energy Environ. Mater., 4(2021), No. 3, p. 363.

    Article  CAS  Google Scholar 

  2. S.Q. Zhao, Y.J. He, Z.W. Wang, et al., Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles, Adv. Energy Mater., 12(2022), No. 26, art. No. 2201015.

  3. Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549.

    Article  CAS  Google Scholar 

  4. A.M. Huang, Y.C. Ma, J. Peng, et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1(2021), No. 2, p. 141.

    Article  Google Scholar 

  5. M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656.

    Article  CAS  Google Scholar 

  6. L.Y. Qiu, X.Q. Lai, F.F. Wang, et al., Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li-ion battery, Ceram. Int., 47(2021), No. 14, p. 19455.

    Article  CAS  Google Scholar 

  7. H.M. Qian and X.F. Li, Progress in functional solid electrolyte interphases for boosting Li metal anode, Acta Phys. Chim. Sin., 37(2021), No. 2, art. No. 2008092.

  8. C. Sun, X. Li, X.Z. Wu, et al., Improved the lithium storage capability of Na2Li2Ti6O14 by barium doping, J. Electroanal. Chem., 802(2017), p. 100.

    Article  CAS  Google Scholar 

  9. Y.K. Ye, Z.X. Hu, J.H. Liu, et al., Research progress of theoretical studies on polarons in cathode materials of lithium-ion batteries, Acta Phys. Chim. Sin., 37(2021), No. 11, art. No. 2011003.

  10. H. Chang, Y.R. Wu, X. Han, and T.F. Yi, Recent developments in advanced anode materials for lithium-ion batteries, Energy Mater., 1(2021), art. No. 100003.

  11. Y. Xiao, R. Xu, L. Xu, J.F. Ding, and J.Q. Huang, Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries, Energy Mater., 1(2021), art. No. 100013.

  12. X. Qiao, X.B. Yang, N. Zhang, et al., One-step in situ encapsulation of Ge nanoparticles into porous carbon network with enhanced electron/ion conductivity for lithium storage, Rare Met., 40(2021), No. 9, p. 2432.

    Article  CAS  Google Scholar 

  13. S.Q. Zhao, C.D. Sewell, R.P. Liu, et al., SnO2 as advanced anode of alkali-ion batteries: Inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility, Adv. Energy Mater., 10(2020), No. 6, art. No. 1902657.

  14. Y. Li, T.F. Yi, X.Z. Li, et al., Li2ZnTi3O8@a-Fe2O3 composite anode material for Li-ion batteries, Ceram. Int., 47(2021), No. 13, p. 18732.

    Article  CAS  Google Scholar 

  15. J.B. Ye, T. Chen, Q.N. Chen, W.X. Chen, Z.T. Yu, and S.R. Xu, Facile hydrothermal synthesis of SnCoS4/graphene composites with excellent electrochemical performance for reversible lithium ion storage, J. Mater. Chem. A, 4(2016), No. 34, p. 13194.

    Article  CAS  Google Scholar 

  16. L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538.

    Article  Google Scholar 

  17. H. Yang, H.L. Zhu, Y.X. Qi, N. Lun, and Y.J. Bai, Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid, J. Mater. Sci., 55(2020), No. 32, p. 15538.

    Article  CAS  Google Scholar 

  18. C. Chen, C.C. Ai, and X.Y. Liu, Ti(III) self-doped Li2ZnTi3O8 as a superior anode material for Li-ion batteries, Electrochim. Acta, 265(2018), p. 448.

    Article  CAS  Google Scholar 

  19. H. Yang, J. Park, C.S. Kim, et al., Boosted electrochemical performance of Li2ZnTi3O8 enabled by ion-conductive Li2ZrO3 concomitant with superficial Zr-doping, J. Power Sources, 379(2018), p. 270.

    Article  CAS  Google Scholar 

  20. A.I. Inamdar, A.T.A. Ahmed, H.S. Chavan, et al., Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery, Ceram. Int., 44(2018), No. 15, p. 18625.

    Article  CAS  Google Scholar 

  21. L. Wang, L.J. Wu, Z.H. Li, G.T. Lei, Q.Z. Xiao, and P. Zhang, Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries, Electrochim. Acta, 56(2011), No. 15, p. 5343.

    Article  CAS  Google Scholar 

  22. S. Qi, J. Pan, L.N. Shi, Y.R. Zhu, T.F. Yi, and Y. Xie, Achieving high-performance Li2ZnTi3O8 anode for advanced Li-ion batteries by molybdenum doping, Mater. Today Chem., 21(2021), art. No. 100523.

  23. S. Wang, L.J. Wang, Z.H. Meng, and R. Xun, Design of a three-dimensional-network Li2ZnTi3O8 co-modified with graphene nanosheets and carbon nanotubes as a high performance anode material for lithium-ion batteries, J. Alloys Compd., 774(2019), p. 581.

    Article  CAS  Google Scholar 

  24. Y.X. Xu, Z.S. Hong, L.C. Xia, J. Yang, and M.D. Wei, One step sol—gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties, Electrochim. Acta, 88(2013), p. 74.

    Article  CAS  Google Scholar 

  25. H.Q. Tang, Y.K. Zhou, L.X. Zan, N.Q. Zhao, and Z.Y. Tang, Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries, Electrochim. Acta, 191(2016), p. 887.

    Article  CAS  Google Scholar 

  26. C.Y. Xu, J.L. Li, J. Sun, W.Z. Zhang, and B.M. Ji, Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li ion batteries, J. Alloys Compd., 895(2022), art. No. 162613.

  27. Z.F. Li, H. Li, Y.H. Cui, et al., Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery, J. Alloys Compd., 692(2017), p. 131.

    Article  CAS  Google Scholar 

  28. Z.K. Fang, Y.R. Zhu, T.F. Yi, and Y. Xie, Li4Ti5O12-LiAlO2 composite as high performance anode material for lithium-ion battery, ACS Sustainable Chem. Eng., 4(2016), No. 4, p. 1994.

    Article  CAS  Google Scholar 

  29. G.Y. Ding, F.Q. Yan, Z. Zhu, et al., Mussel-inspired polydopamine-assisted uniform coating of Li+ conductive LiAlO2 on nickel-rich LiNi0.8Co0.1Mn0.1O2 for high-performance Li-ion batteries, Ceram. Int., 48(2022), No. 4, p. 5714.

    Article  CAS  Google Scholar 

  30. Y. Wu, Y.F. Li, L.Y. Wang, et al., Enhancing the Li-ion storage performance of graphite anode material modified by LiAlO2, Electrochim. Acta, 235(2017), p. 463.

    Article  CAS  Google Scholar 

  31. H. Yang, N. Lun, Y.X. Qi, et al., Li2ZnTi3O8 coated with uniform lithium magnesium silicate layer revealing enhanced rate capability as anode material for Li-ion battery, Electrochim. Acta, 315(2019), p. 24.

    Article  CAS  Google Scholar 

  32. T.B. Lan, L. Chen, Y.B. Liu, W.F. Zhang, and M.D. Wei, Nanocomposite Li2ZnTi3O8/C with enhanced electrochemical performances for lithium-ion batteries, J. Electroanal. Chem., 794(2017), p. 120.

    Article  CAS  Google Scholar 

  33. H.Q. Tang, L.X. Zan, and Z.Y. Tang, Predominant electronic conductivity of Li2ZnTi3O8 anode material prepared in nitrogen for rechargeable lithium-ion batteries, J. Electroanal. Chem., 823(2018), p. 269.

    Article  CAS  Google Scholar 

  34. S.Q. Zhao, Z.W. Wang, Y.J. He, et al., A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide, Adv. Energy Mater., 9(2019), No. 26, art. No. 1901093.

  35. Q.Y. Li, G.C. Yang, Y.Q. Chu, et al., Enhanced electrochemical performance of Ni-rich cathode material by N-doped LiAlO2 surface modification for lithium-ion batteries, Elcctochhim. Acta, 372(2021), art. No. 137882.

  36. C.Y. An, C.H. Li, H.Q. Tang, T. Liu, and Z.Y. Tang, Binder-free flexible Li2ZnTi3O8@MWCNTs stereoscopic network as lightweight and superior rate performance anode for lithium-ion batteries, J. Alloys Compd., 816(2020), art. No. 152580.

  37. P.P. Peng, Y.R. Wu, X.Z. Li, et al., Toward superior lithium/sodium storage performance: Design and construction of novel TiO2-based anode materials, Rare Met., 40(2021), No. 11, p. 3049.

    Article  CAS  Google Scholar 

  38. C.X. Hou, J. Wang, W. Du, et al., One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage, J. Mater. Chem. A, 7(2019), No. 22, p. 13460.

    Article  CAS  Google Scholar 

  39. T. Liu, H.Q. Tang, J.Y. Liu, et al., Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent, Electrochim. Acta, 259(2018), p. 28.

    Article  CAS  Google Scholar 

  40. G.S. Sim, P. Santhoshkumar, J.W. Park, et al., Chitosan-derived nitrogen-doped carbon on Li2ZnTi3O8/TiO2 composite as an anode material for lithium-ion batteries, Ceram. Int., 47(2021), No. 23, p. 33554.

    Article  CAS  Google Scholar 

  41. S. Wang, Y.F. Bi, L.J. Wang, Z.H. Meng, and B.M. Luo, Modoped Li2ZnTi3O8@graphene as a high performance anode material for lithium-ion batteries, Electrochim. Acta, 301(2019), p. 319.

    Article  CAS  Google Scholar 

  42. Z.S. Hong, M.D. Wei, X.K. Ding, L.L. Jiang, and K.M. Wei, Li2ZnTi3O8 nanorods: A new anode material for lithium-ion battery, Electrochem. Commun., 12(2010), No. 6, p. 720.

    Article  CAS  Google Scholar 

  43. H.S. Ren, H.Y. Peng, T.Y. Xie, et al., Temperature stable microwave dielectric ceramics in Li2ZnTi3O8-based composite for LTCC applications, J. Mater. Sci. Mater. Electron., 29(2018), No. 15, p. 12978.

    Article  CAS  Google Scholar 

  44. T.T. Liu, N. Peng, X.K. Zhang, et al., Controllable defect engineering enhanced bond strength for stable electrochemical energy storage, Nano Energy, 79(2021), art. No. 105460.

  45. P. Fu, Z.Y. Li, Y. Pan, et al., Synthesis and characterization of Sm-doped Li2ZnTi3O8 as anode material for lithium-ion batteries, Mater. Chem. Phys., 277(2022), art. No. 125449.

  46. T.F. Yi, J.Z. Wu, J. Yuan, Y.R. Zhu, and P.F. Wang, Rapid lithiation and delithiation property of V-doped Li2ZnTi3O8 as anode material for lithium-ion battery, ACS Sustainable Chem. Eng., 3(2015), No. 12, p. 3062.

    Article  CAS  Google Scholar 

  47. L.Y. Qiu, Y.R. Ji, Z.C. Lv, et al., Enhanced lithium storage property of porous Na2Li2Ti6O14@PEDOT spheres as anodes for lithium-ion batteries, Mater. Chem. Phys., 278(2022), art. No. 125700.

  48. H. Chang, Y. Li, Z.K. Fang, J.P. Qu, Y.R. Zhu, and T.F. Yi, Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56 TiO3 nanorod composites for high-performance Li-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 28, p. 33102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U1960107), the “333” Talent Project of Hebei Province, China (No. A202005018), the Fundamental Research Funds for the Central Universities (No. N2123001), and the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, China (No. 22567627H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingfeng Yi.

Additional information

Conflict of Interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Zhao, Y., Ji, Y. et al. Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites. Int J Miner Metall Mater 30, 611–620 (2023). https://doi.org/10.1007/s12613-022-2532-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2532-2

Keywords

Navigation