Skip to main content
Log in

Effects of Li3PO4 additive on the electrochemical properties of Li2FeSiO4 as cathode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li2FeSiO4/C is successfully modified by Li3PO4 additive to achieve excellent electrochemical properties. In comparison with bare Li2FeSiO4/C, the samples with Li3PO4 show no changes in the morphology and structure, which are verified by X-ray powder diffraction and scanning electron microscopy results. High resolution transmission electron microscopy image confirms that Li2FeSiO4/C and Li3PO4 exist in the form of nanocomposites. When used as LIB cathodes, the Li2FeSiO4/Li3PO4/C composites show notably improved electrochemical performance with outstanding high rate performance and superior cyclability than those of Li2FeSiO4/C. The sample with 6 mmol% (LFS-6) exhibits a large discharge capacity of 114.1 mAh g−1 with a remarkable capacity retention of 104.2% over 100 cycles at 10 C, which are much better than those of Li2FeSiO4/C (89.0 mAh g−1 and capacity retention of 75.9%). The enhancement in the electrochemical properties of Li2FeSiO4/C may be attributed to the existence of Li3PO4 additive with high ionic conductivity, which can accelerate the lithium ions diffusion capability and facilitate the charge transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  Google Scholar 

  2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  Google Scholar 

  3. G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2017)

    Article  Google Scholar 

  4. J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    Article  Google Scholar 

  5. D. Andre, S.-J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, B. Stiaszny, Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3(13), 6709–6732 (2015)

    Article  Google Scholar 

  6. J. Ni, Y. Jiang, X. Bi, L. Li, J. Lu, Lithium iron orthosilicate cathode: progress and perspectives. ACS Energy Lett. 2(8), 1771–1781 (2017)

    Article  Google Scholar 

  7. H. Wei, X. Lu, H.-C. Chiu, B. Wei, R. Gauvin, Z. Arthur, V. Emond, D.-T. Jiang, K. Zaghib, G.P. Demopoulos, Ethylenediamine-enabled sustainable synthesis of mesoporous nanostructured Li2FeIISiO4 particles from Fe(III) aqueous solution for li-ion battery application. ACS Sustain. Chem. Eng. 6, 7458–7469 (2018)

    Article  Google Scholar 

  8. R. Dominko, Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 184, 462–468 (2008)

    Article  Google Scholar 

  9. A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek, K. Jamnik, Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1−xSiO4. Chem. Mater. 19, 3633–3640 (2007)

    Article  Google Scholar 

  10. A. Liicat, J. Thomas, Li-ion migration in Li2FeSiO4-related cathode materials: a DFT study. Solid State Ion. 192, 58–64 (2011)

    Article  Google Scholar 

  11. L. Yi, X. Wang, G. Wang, Y. Bai, M. Liu, X. Wang, R. Yu, Improved electrochemical performance of spherical Li2FeSiO4/C cathode materials via Mn doping for lithium-ion batteries. Electrochim. Acta 222, 1354–1364 (2016)

    Article  Google Scholar 

  12. A. Kumar, O.D. Jayakumar, Jagannath, P. Bashiri, G.A. Nazri, V.M. Naik, R. Naik, Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries. Dalton Trans. 46, 12908–12915 (2017)

    Article  Google Scholar 

  13. H. Qiu, H. Yue, X. Wang, T. Zhang, M. Zhang, Z. Fang, X. Zhao, G. Chen, Y. Wei, C. Wang, D. Zhang, Titanium-doped Li2FeSiO4/C composite as the cathode material for lithium-ion batteries with excellent rate capability and long cycle life. J. Alloys Compd. 725, 860–868 (2017)

    Article  Google Scholar 

  14. C. Deng, S. Zhang, S.Y. Yang, B.L. Fu, L. Ma, Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J. Power Sources 196, 386–392 (2011)

    Article  Google Scholar 

  15. J. Yang, X. Kang, D. He, T. Peng, L. Hu, S. Mu, Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries. J. Power Sources 242, 171–178 (2013)

    Article  Google Scholar 

  16. J. Yang, X. Kang, D. He, A. Zhang, M. Pan, S. Mu, Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J. Mater. Chem. A 3, 16567–16573 (2015)

    Article  Google Scholar 

  17. X. Wu, X. Wang, Y. Zhang, Nanoworm like Li2FeSiO4-C composites as lithium-ion battery cathodes with superior high-rate capability. ACS Appl. Mater. Interfaces. 3, 2510–2516 (2013)

    Article  Google Scholar 

  18. Y. Xu, W. Shen, A. Zhang, H. Liu, Z. Ma, Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2, 12982–12990 (2014)

    Article  Google Scholar 

  19. Z. Ding, J. Liu, J. Ran, X. Zeng, S. Yang, A. Pan, D.G. Ivey, W. Wei, Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. J. Power Sources 329, 297–304 (2016)

    Article  Google Scholar 

  20. Q. Zhang, C. Yan, Y. Meng, X. Wang, Hierarchical mesoporous Li2FeSiO4/C sheaf-rods as a high-performance lithium-ion battery cathode. J. Alloys Compd. 767, 195–203 (2018)

    Article  Google Scholar 

  21. Y. Fujita, T. Hira, K. Shida, M. Tsushida, J. Liao, M. Matsuda, Microstructure of high battery-performance Li2FeSiO4/C composite powder synthesized by combing different carbon sources in spray-freezing/freeze-drying process. Ceram. Int. 44, 11211–11217 (2018)

    Article  Google Scholar 

  22. S. Sun, C.M. Ghimbeu, C. Vis-Guterl, M.-T. Sougrati, C. Masquelier, R. Janot, Synthesis of Li2FeSiO4/carbon nano-composites by impregnation method. J. Power Sources 284, 574–581 (2015)

    Article  Google Scholar 

  23. X. Huang, X. Li, H. Wang, Z. Pan, M. Qu, Z. Yu, Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochim. Acta 55, 7362–7366 (2010)

    Article  Google Scholar 

  24. K.C. Kam, T. Gustafsson, J.O. Thomas, Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode. Solid State Ion. 192, 356–359 (2011)

    Article  Google Scholar 

  25. J. Bai, Z. Gong, D. Lv, Y. Li, H. Zou, Y. Yang, Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 22, 12128–12132 (2012)

    Article  Google Scholar 

  26. D. Li, R. Xie, M. Tian, S. Ma, L. Gou, X. Fan, Y. Shi, H.-T.-H. Yong, L. Hao, Improving high-rate performance of mesoporous Li2FeSiO4/Fe7SiO10/C nanocomposite cathode with a mixed valence Fe7SiO10 nanocrystal. J. Mater. Chem. A 2, 4375–4383 (2014)

    Article  Google Scholar 

  27. H. Qiu, H. Yue, T. Zhang, T. Li, C. Wang, G. Chen, Y. Wei, D. Zhang, Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets. Electrochim. Acta 222, 1870–1877 (2016)

    Article  Google Scholar 

  28. K. Gaur, A.J. Pathak, H.B. Lal, Ionic and electronic conductivity in some simple lithium salts. J. Mater. Sci. 23, 4257–4262 (1988)

    Article  Google Scholar 

  29. C. Lee, P.K. Dutta, R. Ramamoorthy, S.A. Akbar, Mixed ionic and electronic conduction in Li3PO4 electrolyte for a CO2 gas sensor. J. Electrochem. Soc. 153, H4–H14 (2005)

    Article  Google Scholar 

  30. C.-H. Jo, D.-H. Cho, H.-J. Noh, H. Yashiro, Y.-K. Sun, S.T. Myung, An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 8, 1464–1479 (2015)

    Article  Google Scholar 

  31. H.G. Song, J.Y. Kim, K.T. Kim, Y.J. Park, Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J. Power Sources 196, 6847–6855 (2011)

    Article  Google Scholar 

  32. Y. Jin, N. Li, C.H. Chen, S.Q. Wei, Electrochemical characterizations of commercial LiCoO2 powders with surface modified by Li3PO4 nanoparticles. Electrochem. Solid-State Lett. 9(6), A273–A276 (2006)

    Article  Google Scholar 

  33. H. Konishi, K. Suzuki, S. Taminato, K. Kim, Y. Zheng, S. Kim, J. Lim, M. Hirayama, J.-Y. Son, Y. Cui, R. Kanno, Effect of surface Li3PO4 coating on LiNi0.5Mn1.5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition. J. Power Sources 269(4), 293–298 (2014)

    Article  Google Scholar 

  34. S.-X. Zhao, H. Ding, Y.-C. Wang, B.-H. Li, C.-W. Nan, Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon. J. Alloys Compd. 566, 206–211 (2013)

    Article  Google Scholar 

  35. X. Li, R. Yang, B. Cheng, Q. Hao, H. Xu, J. Yang, Y. Qian, Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55°C. Mater. Lett. 66, 168–171 (2012)

    Article  Google Scholar 

  36. Z. Wang, S. Luo, J. Ren, D. Wang, X. Qi, Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4. Appl. Surf. Sci. 370, 437–444 (2016)

    Article  Google Scholar 

  37. X. Bian, Q. Fu, X. Bie, P. Yang, H. Qiu, Q. Pang, G. Chen, F. Du, Y. Wei, Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim. Acta 174, 875–884 (2015)

    Article  Google Scholar 

  38. H. Liu, C. Chen, C. Du, X. He, G. Yin, B. Song, P. Zuo, X. Cheng, Y. Ma, Y. Gao, Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J. Mater. Chem. A 3, 2634–2641 (2015)

    Article  Google Scholar 

  39. F. Wu, X. Zhang, T. Zhao, L. Li, M. Xie, R. Chen, Surface modification of cobalt-free layered Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 oxide with FePO4/Li3PO4 composite as the cathode for lithium-ion batteries. J. Mater. Chem. A 3, 9528–9537 (2015)

    Article  Google Scholar 

  40. X. Wu, X. Jiang, Q. Huo, Y. Zhang, Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries. Electrochim. Acta 80, 50–55 (2012)

    Article  Google Scholar 

  41. S.I. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, A. Yamada, Structure of Li2FeSiO4. J. Am. Chem. Soc. 130, 13212–13213 (2008)

    Article  Google Scholar 

  42. A. Nyten, S. Kamali, L. Haggstrom, T. Gustafsson, J.O. Thomas, The lithium extraction/insertion mechanism in Li2FeSiO4. J. Mater. Chem. 16, 2266–2272 (2006)

    Article  Google Scholar 

  43. H. Qiu, K. Zhu, H. Li, T. Li, T. Zhang, H. Yue, Y. Wei, F. Du, C. Wang, G. Chen, D. Zhang, Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87, 365–373 (2015)

    Article  Google Scholar 

  44. X. Wang, C. Qing, Q. Zhang, W. Fan, X. Huang, B. Yang, J. Cui, Facile synthesis and enhanced electrochemical performance of Li2FeSiO4/C/reduced graphene oxide nanocomposites. Electrochim. Acta 134, 371–376 (2014)

    Article  Google Scholar 

  45. L.-L. Zhang, S. Duan, X.-L. Yang, G. Liang, Y.-H. Huang, X.-Z. Cao, J. Yang, M. Li, M.C. Croft, C. Lewis, Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. J. Power Sources 274, 194–202 (2015)

    Article  Google Scholar 

  46. L. Qu, D. Luo, S. Fang, Y. Liu, L. Yang, S. Hirano, C.-C. Yang, Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery. J. Power Sources 307, 69–76 (2016)

    Article  Google Scholar 

  47. H. Qiu, H. Yue, T. Zhang, Y. Ju, Y. Zhang, Z. Guo, C. Wang, G. Chen, Y. Wei, D. Zhang, Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim. Acta 188, 636–644 (2016)

    Article  Google Scholar 

  48. A.J. Bard, J.R. Faulkner, Electrochemical methods, 2nd edn. (Wiley, New York, 2001), p. 231

    Google Scholar 

Download references

Acknowledgements

This investigation is supported by National Science Foundation of China (Grant No. 21271145), the National Science Foundation of Hubei Province (Grant No. 2015CFB537) and the Science and Technology Innovation Committee of Shenzhen Municipality (contract NO. JCYJ20170306171321438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zan, L. & Zhang, Y. Effects of Li3PO4 additive on the electrochemical properties of Li2FeSiO4 as cathode material for lithium-ion batteries. J Mater Sci: Mater Electron 30, 15582–15591 (2019). https://doi.org/10.1007/s10854-019-01934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01934-5

Navigation