Skip to main content
Log in

Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hot compression tests were performed to investigate the hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150°C and the strain rate range was 0.01–5 s−1 on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol−1. The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100°C and strain rate of 0.01 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe-Mn-Al-C low density steels, Prog. Mater. Sci., 89(2017), p. 345.

    Article  CAS  Google Scholar 

  2. R. Rana, C. Lahaye, and R.K. Ray, Overview of lightweight ferrous materials: Strategies and promises, JOM, 66(2014), No. 9, p. 1734.

    Article  Google Scholar 

  3. K. Lu, The future of metals, Science, 328(2010), No. 5976, p. 319.

    Article  CAS  Google Scholar 

  4. B. Wietbrock, W. Xiong, M. Bambach, and G. Hirt, Effect of temperature, strain rate, manganese and carbon content on flow behavior of three ternary Fe-Mn-C (Fe-Mn23-C0.3, Fe-Mn23-C0.6, Fe-Mn28-C0.3) high-manganese steels, Steel Res. Int., 82(2011), No. 1, p. 63.

    Article  CAS  Google Scholar 

  5. H.L. Yi, L. Sun, and X.C. Xiong, Challenges in the formability of the next generation of automotive steel sheets, Mater. Sci. Technol., 34(2018), No. 9, p. 1112.

    Article  CAS  Google Scholar 

  6. W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782.

    Article  CAS  Google Scholar 

  7. B.C. de Cooman, Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142(2018), p. 283.

    Article  CAS  Google Scholar 

  8. S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741.

    Article  CAS  Google Scholar 

  9. Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe-0.3C–9Mn-2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422.

    Article  CAS  Google Scholar 

  10. J. Hu, J.M. Zhang, G.S. Sun, et al., High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing, J. Mater. Sci., 54(2019), No. 8, p. 6565.

    Article  CAS  Google Scholar 

  11. J. Hu, L.X. Du, W. Xu, et al., Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Mater. Charact., 136(2018), p. 20.

    Article  CAS  Google Scholar 

  12. S.W. Hwang, J.H. Ji, and K.T. Park, Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels, Mater. Sci. Eng. A, 528(2011), No. 24, p. 7267.

    Article  CAS  Google Scholar 

  13. C.Y. Chao and C.H. Liu, Effects of Mn contents on the microstructure and mechanical properties of the Fe-10Al-.xMn-1.0C alloy, Mater. Trans., 43(2002), No. 10, p. 2635.

    Article  CAS  Google Scholar 

  14. D. Raabe, H. Springer, I. Gutierrez-Urrutia, et al., Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels, JOM, 66(2014), No. 9, p. 1845.

    Article  CAS  Google Scholar 

  15. I. Kalashnikov, A. Shalkevich, O. Acselrad, and L.C. Pereira, Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system, J. Mater. Eng. Perform., 9(2000), No. 6, p. 597.

    Article  CAS  Google Scholar 

  16. C.M. Chu, H. Huang, P.W. Kao, and D. Gan, Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys, Scripta Metall. Mater., 30(1994), No. 4, p. 505.

    Article  CAS  Google Scholar 

  17. H. Kim, D.W. Suh, and N.J. Kim, Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties, Sci. Technol. Adv. Mater., 14(2013), No. 1, art. No. 014205.

    Google Scholar 

  18. A.S. Hamada, L.P. Karjalainen, M.C. Somani, and R.M. Ramadan, Deformation mechanisms in high-Al bearing high-Mn TWIP steels in hot compression and in tension at low temperatures, Mater. Sci. Forum, 550(2007), p. 217.

    Article  CAS  Google Scholar 

  19. R. Rana, C. Liu, and R.K. Ray, Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application, Acta Mater., 75(2014), p. 227.

    Article  CAS  Google Scholar 

  20. C. Haase, C. Zehnder, T. Ingendahl, et al., On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel, Acta Mater., 122(2017), p. 332.

    Article  CAS  Google Scholar 

  21. Y.H. Mozumder, K. Babu, R. Saha, and S. Mandal, Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate, Mater. Sci. Eng. A, 823(2021), art. No. 141725.

  22. R.W.K. Honeycombe and R.W. Pethen, Dynamic recrystallization, J. Less Common Met., 28(1972), No. 2, p. 201.

    Article  CAS  Google Scholar 

  23. T.K. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130.

    Article  CAS  Google Scholar 

  24. H.R. Abedi, A.Z. Hanzaki, Z. Liu, R. Xin, N. Haghdadi, and P.D. Hodgson, Continuous dynamic recrystallization in low density steel, Mater. Des., 114(2017), p. 55.

    Article  CAS  Google Scholar 

  25. L.X. Xu, H.B. Wu, and X.T. Wang, Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel, Acta Metall. Sinica Engl. Lett., 31(2018), No. 4, p. 389.

    Article  CAS  Google Scholar 

  26. D.G. Liu, H. Ding, X. Hu, D. Han, and M.H. Cai, Dynamic re-crystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel, Mater. Sci. Eng. A, 772(2020), art. No. 138682.

  27. D.T. Pierce, D.M. Field, K.R. Limmer, T. Muth, and K.M. Sebeck, Hot deformation behavior of an industrially cast large grained low density austenitic steel, Mater. Sci. Eng. A, 825(2021), art. No. 141785.

  28. J. Sun, J.H. Li, P. Wang, and Z.Y. Huang, Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel, Trans. Indian Inst. Met., 75(2022), No. 3, p. 699.

    Article  Google Scholar 

  29. L. Duprez, B.C. De Cooman, and N. Akdut, Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation, Metall. Mater. Trans. A, 33(2002), No. 7, p. 1931.

    Article  Google Scholar 

  30. F. Montheillet, Moving grain boundaries during hot deformation of metals: Dynamic recrystallization, [in] F.D. Fischer, ed., Moving Interfaces in Crystalline Solids, CISM International Centre for Mechanical Sciences, Vol. 453, Springer, Vienna, 2004, p. 203.

    Google Scholar 

  31. C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22.

    Article  Google Scholar 

  32. Y.S. Li, Y.W. Dong, Z.H. Jiang, Q.F. Tang, S.Y. Du, and Z.W. Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. p.

    Google Scholar 

  33. C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation, Acta Metall., 14(1966), No. 9, p. 1136.

    Article  CAS  Google Scholar 

  34. Y.P. Li, R.B. Song, E.D. Wen, and F.Q. Yang, Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel, Acta Metall. Sinica Engl. Lett., 29(2016), No. 5, p. 441.

    Article  CAS  Google Scholar 

  35. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation, Mater. Sci. Eng. A, 689(2017), p. 269.

    Article  CAS  Google Scholar 

  36. A. Khosravifard, A.S. Hamada, M.M. Moshksar, R. Ebrahimi, D.A. Porter, and L.P. Karjalainen, High temperature deformation behavior of two as-cast high-manganese TWIP steels, Mater. Sci. Eng. A, 582(2013), p. 15.

    Article  CAS  Google Scholar 

  37. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A, 467(2007), No. 1–2, p. 114.

    Article  Google Scholar 

  38. Z.Q. Wu, Y.B. Tang, W. Chen, et al., Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map, Vacuum, 159(2019), p. 447.

    Article  CAS  Google Scholar 

  39. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 528(2011), No. 10–11, p. 3876.

    Article  Google Scholar 

  40. E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127.

    Article  CAS  Google Scholar 

  41. G.M. Liu, J.B. Wang, Y.F. Ji, et al., Hot deformation behavior and microstructure evolution of Fe-5Mn-3Al-0.1C high-strength lightweight steel for automobiles, Materials, 14(2021), No. 10, art. No. 2478.

    Google Scholar 

  42. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N), Metall. Mater. Trans. A, 45(2014), No. 12, p. 5645.

    Article  CAS  Google Scholar 

  43. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater., 57(2009), No. 9, p. 2748.

    Article  CAS  Google Scholar 

  44. Z.Y. Huang, Y.S. Jiang, A.L. Hou, et al., Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1531.

    Article  CAS  Google Scholar 

  45. M. Shaban and B. Eghbali, Determination of critical conditions for dynamic recrystallization of a microalloyed steel, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 4320.

    Article  Google Scholar 

  46. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883.

    Article  Google Scholar 

  47. Y.V.R.K. Prasad, Processing maps: A status report, J. Mater. Eng. Perform., 12(2003), No. 6, p. 638.

    Article  CAS  Google Scholar 

  48. P. Wan, H.X. Yu, F. Li, P.F. Gao, L. Zhang, and Z.Z. Zhao, Hot deformation behaviors and process parameters optimization of low-density high-strength Fe-Mn-Al-C alloy steel, Met. Mater. Int., 28(2022), No. 10, p. 2498.

    Article  CAS  Google Scholar 

  49. M.S. Ghazani and B. Eghbali, Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1799.

    Article  CAS  Google Scholar 

  50. H. Ziegler, Some extremum principles in irreversible thermodynamics, with application to continuum mechanics, Prog. Solid Mech., 4(1963), p. 93.

    Google Scholar 

  51. A. Momeni and K. Dehghani, Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1448.

    Article  Google Scholar 

  52. M.A. Davinci, D. Samantaray, U. Borah, S.K. Albert, and A.K. Bhaduri, Influence of processing parameters on hot workability and microstructural evolution in a carbon-manganese-silicon steel, Mater. Des., 88(2015), p. 567.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52071300 and 51904278), the Special Funding Projects for Local Science and Technology Development guided by the Central Committee (No. YDZX20191400004587), the Key Research and Development Project of Zhejiang Province, China (No. 2020C01131), and the Innovation projects of colleges and universities in Shanxi Province, China (No. 2019L0577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhao Li.

Additional information

Conflict of Interest

To the best of our knowledge, the authors have no conflict of interest, financial, or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Li, D., Li, S. et al. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel. Int J Miner Metall Mater 30, 734–743 (2023). https://doi.org/10.1007/s12613-022-2531-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2531-3

Keywords

Navigation