Skip to main content
Log in

Hot Deformation Behavior, Dynamic Recrystallization and Processing Map of Fe–30Mn–10Al–1C Low-Density Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the hot deformation behavior of Fe–30Mn–10Al–1C low-density steel was investigated by Gleeble-1500D thermomechanical simulator at a temperature range of 850–1100 °C and a strain rate range of 0.01–10 s–1. The constitutive equation and dynamic recrystallization (DRX) kinetic model of the experimental steel were established. Processing maps under different strains were drawn to explore the optimum hot working parameters of the steel. The results show that the flow stress decreases with increasing deformation temperature and increases with increasing strain rate. The average activation energy of hot deformation (Q) was calculated to be 391.57 kJ/mol. The volume fraction of DRX grains increases with the increase in strain with a sigmoid-shape curve. Dislocation slip is the predominant deformation mechanism of the experimental steel with increasing hot compression temperature. The optimum hot working parameters of the experimental steel are: a deformation temperature of 975–1100 °C, a strain rate in the range 0.01–1 s–1, and the efficiency of power dissipation of 36–64%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Chen S, Rana R, Haldar A, and Ray R K, Prog. Mater. Sci. 89 (2017) 345

    Article  CAS  Google Scholar 

  2. Zambrano O A, J. Mater. Sci. 53 (2017) 14003

    Article  Google Scholar 

  3. Kim H, Suh D W, and Kim N J, Sci. Technol. Adv. Mater. 14 (2013) 014205

    Article  CAS  Google Scholar 

  4. Huang Z, Jiang Y, Hou A, Wang P, Shi Q, Hou Q, and Liu X, J. Mater. Sci. Technol. 33 (2017) 1531

    Article  CAS  Google Scholar 

  5. Ren P, Chen X P, Mei L, Nie Y Y, Cao W Q, and Liu Q, Mater. Sci. Eng. A. 775 (2020) 138984

  6. Zargaran A, Kim H, Kwak J H, and Kim N J, Scr. Mater. 89 (2014) 37

    Article  CAS  Google Scholar 

  7. Liu D, Ding H, and Cai M, J. Mater. Eng. Perform. 28 (2019)5116

    Article  CAS  Google Scholar 

  8. Huang Z Y, Hou A L, Jiang Y S, Wang P, Shi Q, Hou Q Y, and Liu X H, J. Iron Steel Res. Int. 24 (2017) 1190

    Article  Google Scholar 

  9. Li Y P, Song R B, Wen E D, and Yang F Q, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 1

  10. Raabe D, Springer H, Gutiérrez-Urrutia I, Roters F, Bausch M, Seol JB, Koyama M, Choi PP, and Tsuzaki K, JOM. 66 (2014) 1845

    Article  CAS  Google Scholar 

  11. Zambrano O A, Valdés J, Aguilar Y, Coronado J J, Rodríguez S A, and Logé R E, Mater. Sci. Eng. A. 689 (2017) 269

    Article  CAS  Google Scholar 

  12. Sutou Y, Kamiya N, Umino R, Ohnuma I, and Ishida K, ISIJ Int. 50 (2010) 893

    Article  CAS  Google Scholar 

  13. Gutierrez-Urrutia I, and Raabe D, Mater. Sci. Technol. 30 (2014) 1099

    Article  CAS  Google Scholar 

  14. Yoo J D, Hwang S W, and Park K T, Metall. Mater. Trans.A. 40 (2009) 1520

  15. Yoo J D, and Park K T. Mater. Sci. Eng. A. 496 (2008) 417

    Article  Google Scholar 

  16. Ing J, Wei Y, and Hou L, JOM. 70 (2018) 929

    Article  Google Scholar 

  17. Moon J, Park S J, Jang J H, Lee T H, Lee C H, Hong H U, Suh D W, Kim S H, Han H N, and Lee B H, Scr. Mater. 127 (2017) 97

    Article  CAS  Google Scholar 

  18. Park K T, Scr. Mater. 68 (2013) 375

    Article  CAS  Google Scholar 

  19. Springer H, and Raabe D, Acta Mater. 60 (2012) 4950

    Article  CAS  Google Scholar 

  20. Long J, Xia Q, Xiao G, Qin Y, and Yuan S, Int. J. Mech. Sci. 191 (2021) 106069

  21. Mcqueen H J and Ryan N D, Mater. Sci. Eng. A. 322 (2002) 47

    Article  Google Scholar 

  22. Sellars C M, Mater. Sci. Technol. 16 (1990) 1072

    Article  Google Scholar 

  23. Hamada A S, Karjalainen L P, and Somani M C, Mater. Sci. Eng. A. 467 (2007) 114

    Article  Google Scholar 

  24. Hamada A S, Karjalainen L P, Somani M C, and Ramadan R M, Mater. Sci. Forum. 550 (2007) 217

    Article  CAS  Google Scholar 

  25. Zener C, and Hollomon J H, J. Appl. Phys. 15 (1944) 22

    Article  Google Scholar 

  26. Poliak E I, and Jonas J J, ISIJ Int. 43 (2003) 684

    Article  CAS  Google Scholar 

  27. Wu G, Zhou C, and Liu X, J. Cent. South Univ. 23 (2016) 1007

    Article  Google Scholar 

  28. Ferdowsi M R, Gnakhaie D, Benhangi P H, and Ebrahimi G R, J. Mater. Eng. Perform. 23 (2014) 1077

    Article  CAS  Google Scholar 

  29. Jonas J J, Quelennec X, Jiang L, and Martin É, Acta Materialia. 57 (2009) 2748

    Article  CAS  Google Scholar 

  30. Lv B J, Peng J, Wang Y J, An X Q, Zhong L P, Tang A T, and Pan F S, Mater. Des. 53 (2014) 357

    Article  CAS  Google Scholar 

  31. Zhang C, Zhang L, Shen W, Liu C, Xia Y, and Li R, Mater. Des. 90 (2016) 804

    Article  CAS  Google Scholar 

  32. Wei H L, Liu G Q, Xiao X, and Zhang M H, Mater. Sci. Eng. A. 573 (2013) 215

    Article  CAS  Google Scholar 

  33. Shaban M, and Eghbali B, Mater. Sci. Eng. A. 527 (2010) 4320

    Article  Google Scholar 

  34. Ma T, Gao J, Li H, Li C, Zhang H, and Li Y, Met. 11 (2021) 345

    CAS  Google Scholar 

  35. Zambrano O A, J. Eng. Mater. Technol. 138 (2016) 041010.1

  36. Li B, Cao BY, Ramesh KT, and Ma E, Acta Mater. 57 (2009) 4500

    Article  CAS  Google Scholar 

  37. Prasad Y V R K, Rao K P, and Sasidhara S, ASM International, Materials Park, Ohio (1997).

  38. Jiang S, Wang Y, Yan B, and Zhang Y, J. Alloys Compd. 25 (2019) 1153

    Article  Google Scholar 

  39. Tukaszeksotek A, and Krawczyk J, Mater. Des. 65 (2015) 165

    Article  Google Scholar 

  40. Prasad Y V R K, and Seshacharyulu T. Mater: Sci. Eng. A. 243 (1998) 82

    Google Scholar 

  41. Tan S, Wang Z, Cheng S, Liu Z, Han J, and Fu W, Mater: Sci. Eng. A. 517 (2009) 312

    Google Scholar 

Download references

Acknowledgements

The research reported in this paper is financially supported by National Natural Science Foundation of China (Grant Nos. 51674004 and 51805002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghui Li or Zhenyi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Li, J., Wang, P. et al. Hot Deformation Behavior, Dynamic Recrystallization and Processing Map of Fe–30Mn–10Al–1C Low-Density Steel. Trans Indian Inst Met 75, 699–716 (2022). https://doi.org/10.1007/s12666-021-02462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02462-9

Keywords

Navigation