Skip to main content

Advertisement

Log in

Review on coal-based reduction and magnetic separation for refractory iron-bearing resources

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed. Currently, the development and beneficiation of refractory iron-bearing resources have attracted increasing attention. However, the effect of iron recovery by traditional beneficiation methods is unacceptable. Coal-based reduction followed by magnetic separation is proposed, which adopts coal as the reductant to reduce iron oxides to metallic iron below the melting temperature. The metallic iron particles aggregate and grow, and the particle size continuously increases to be suitable for magnetic separation. The optimization and application of coal-based reduction have been abundantly researched. A detailed literature study on coal-based reduction is performed from the perspectives of thermodynamics, reduction kinetics, growth of metallic iron particles, additives, and application. The coal-based reduction industrial equipment can be developed based on the existing pyrometallurgical equipments, rotary hearth furnace and rotary kiln, which are introduced briefly. However, coal-based reduction currently mainly adopts coal as a reductant and fuel, which may result in high levels of carbon dioxide emissions, energy consumption, and pollution. Technological innovation aiming at decreasing carbon dioxide emissions is a new trend of green and sustainable development of the steel industry. Therefore, the substitution of coal with clean energy (hydrogen, biomass, etc.) for iron oxide reduction shows promise in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.X. Wu, J. Yang, L.W. Ma, Z. Li, and X.S. Shen, A system analysis of the development strategy of iron ore in China, Resour. Policy, 48(2016), p. 32.

    Article  Google Scholar 

  2. Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Effect of thermal oxidation pretreatment on the magnetization roasting and separation of refractory iron ore, Miner. Process. Extr. Metall. Rev., 43(2022), No. 2, p. 182.

    Article  Google Scholar 

  3. X.L. Zhang, X.T. Gu, Y.X. Han, N. Parra-Álvarez, V. Claremboux, and S. K. Kawatra, Flotation of iron ores: A review, Miner. Process. Extr. Metall. Rev., 42(2021), No. 3, p. 184.

    Article  CAS  Google Scholar 

  4. B. Anameric and S.K. Kawatra, Properties and features of direct reduced iron, Miner. Process. Extr. Metall. Rev., 28(2007), No. 1, p. 59.

    Article  CAS  Google Scholar 

  5. D. Fernández-González, Í. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L. Verdeja, Iron ore sintering: Raw materials and granulation, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 36.

    Article  Google Scholar 

  6. X.L. Zhang, Y.X. Han, Y.S. Sun, Y. Lv, Y.J. Li and Z.D. Tang, An novel method for iron recovery from iron ore tailings with pre-concentration followed by magnetization roasting and magnetic separation, Miner. Process. Extr. Metall. Rev., 41(2020), No. 2, p. 117.

    Article  CAS  Google Scholar 

  7. S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796.

    Article  CAS  Google Scholar 

  8. U. Srivastava and S.K. Kawatra, Strategies for processing low-grade iron ore minerals, Miner. Process. Extr. Metall. Rev., 30(2009), No. 4, p. 361.

    Article  CAS  Google Scholar 

  9. Q. Zhang, Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Thermal decomposition kinetics of siderite ore during magnetization roasting, Min. Metall. Explor., 38(2021), No. 3, p. 1497.

    Google Scholar 

  10. R.A. Williams, Processing problematic ores, Miner. Eng., 6(1993), No. 8–10, p. 809.

    Article  CAS  Google Scholar 

  11. X. Wang, B. Zhao, J. Liu, Y.M. Zhu, and Y.X. Han, Dithiouracil, a highly efficient depressant for the selective separation of molybdenite from chalcopyrite by flotation: Applications and mechanism, Miner. Eng., 175(2022), art. No. 107287.

  12. S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting-magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449.

    Article  CAS  Google Scholar 

  13. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349.

    Article  CAS  Google Scholar 

  14. K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng., 126(2018), p. 89.

    Article  CAS  Google Scholar 

  15. X.D. Xing, Y.L. Du, J.L. Zheng, Y.F. Chen, S. Ren, and J.T. Ju, Experimental study on strengthening carbothermic reduction of vanadium-titanium-magnetite by adding CaF2, Minerals, 10(2020), No. 3, art. No. 219.

  16. P. Gao, G.F. Li, X.T. Gu, and Y.X. Han, Reduction kinetics and microscopic properties transformation of boron-bearing iron concentrate-carbon-mixed pellets, Miner. Process. Extr. Metall. Rev., 41(2020), No. 3, p. 162.

    Article  CAS  Google Scholar 

  17. S. Yuan, W.T. Zhou, Y.J. Li, and Y.X. Han, Efficient enrichment of nickel and iron in laterite nickel ore by deep reduction and magnetic separation, Trans. Nonferrous Met. Soc. China, 30(2020), No. 3, p. 812.

    Article  CAS  Google Scholar 

  18. Y.J. Li, Y.X. Han, Y.M. Zhu, and J. Liu, Deep reduction tests of antelope iron ore in Linjiang area, J. Northeast. Univ. Nat. Sci., 33(2012), No. 1, p. 137.

    Google Scholar 

  19. Y.J. Li, Y.S. Sun, Y.X. Han and P. Gao, Coal-based reduction mechanism of low-grade laterite ore, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3428.

    Article  CAS  Google Scholar 

  20. Y.S. Sun, P. Gao, Y.X. Han, and D.Z. Ren, Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore, Ind. Eng. Chem. Res., 52(2013), No. 6, p. 2323.

    Article  CAS  Google Scholar 

  21. Y.S. Sun, Y.X. Han, P. Gao, and G.F. Li, Investigation of kinetics of coal based reduction of oolitic iron ore, Ironmaking Steelmaking, 41(2014), No. 10, p. 763.

    Article  CAS  Google Scholar 

  22. Y.S. Sun, Y.X. Han, P. Gao, Z.H. Wang, and D.Z. Ren, Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 411.

    Article  Google Scholar 

  23. Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao, and G.F. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM, 70(2018), No. 2, p. 144.

    Article  CAS  Google Scholar 

  24. W. Yu, T.C. Sun, Q. Cui, C.Y. Xu, and J. Kou, Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore, ISIJ Int., 55(2015), No. 3, p. 536.

    Article  CAS  Google Scholar 

  25. Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Growth kinetics of metallic iron phase in coal-based reduction of oolitic iron ore, ISIJ Int., 56(2016), No. 10, p. 1697.

    Article  CAS  Google Scholar 

  26. Y.S. Sun, Y.X. Han, P. Gao, and J.W. Yu, Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 249.

    Article  CAS  Google Scholar 

  27. Y.S. Sun, Y.X. Han, Y.F. Li, and Y.J. Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123.

    Article  CAS  Google Scholar 

  28. Y.S. Sun, W.T. Zhou, Y.X. Han, and Y.J. Li, Effect of different additives on reaction characteristics of fluorapatite during coal-based reduction of iron ore, Metals, 9(2019), No. 9, art. No. 923.

  29. K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035.

    Article  CAS  Google Scholar 

  30. K.Q. Li, W. Ni, M. Zhu, M.J. Zheng, and Y. Li, Iron extraction from oolitic iron ore by a deep reduction process, J. Iron Steel Res. Int., 18(2011), No. 8, p. 9.

    Article  Google Scholar 

  31. O.I. Nokhrina, I.D. Rozhihina, and I.E. Hodosov, The use of coal in a solid phase reduction of iron oxide, IOP Conf. Ser.: Mater. Sci. Eng., 91(2015), art. No. 012045.

  32. Y. Haseli, Criteria for chemical equilibrium with application to methane steam reforming, Int. J. Hydrogen Energy, 44(2019), No. 12, p. 5766.

    Article  CAS  Google Scholar 

  33. D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108.

  34. N.S. Srinivasan, Reduction of iron oxides by carbon in a circulating fluidized bed reactor, Powder Technol., 124(2002), No. 1–2, p. 28.

    Article  CAS  Google Scholar 

  35. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89.

    Article  CAS  Google Scholar 

  36. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A Gen., 326(2007), No. 1, p. 17.

    Article  CAS  Google Scholar 

  37. J.W. Chen, Y. Jiao, and X.D. Wang, Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 822.

    Article  CAS  Google Scholar 

  38. R. Béchara, H. Hamadeh, O. Mirgaux, and F. Patisson, Optimization of the iron ore direct reduction process through multiscale process modeling, Materials (Basel), 11(2018), No. 7, art. No. 1094.

  39. S. Mishra, Review on reduction kinetics of iron ore—coal composite pellet in alternative and sustainable ironmaking, J. Sustain. Metall., 6(2020), No. 4, p. 541.

    Article  Google Scholar 

  40. S. Sun and W.K. Lu, A theoretical investigation of kinetics and mechanisms of iron ore reduction in an ore/coal composite, ISIJ Int., 39(1999), No. 2, p. 123.

    Article  CAS  Google Scholar 

  41. Y.S. Sun, Y.X. Han, P. Gao, X.C. Wei, and G.F. Li, Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms, Int. J. Miner. Process., 143(2015), p. 87.

    Article  CAS  Google Scholar 

  42. H.M. Ahmed, N.N. Viswanathan, and B. Björkman, Isothermal reduction kinetics of self-reducing mixtures, Ironmaking Steelmaking, 44(2017), No. 1, p. 66.

    Article  CAS  Google Scholar 

  43. X.L. Yuan, F.M. Luo, S.F. Liu, M.Y. Zhang, and D.S. Zhou, Comparative study on the kinetics of the isothermal reduction of iron ore composite pellets using coke, charcoal, and biomass as reducing agents, Metals, 11(2021), No. 2, art. No. 340.

  44. A. Hammam, Y. Cao, A.H.A. El-Geassy, M.H. El-Sadek, Y. Li, H. Wei, M. Omran, and Y.W. Yu, Non-isothermal reduction kinetics of iron ore fines with carbon-bearing materials, Metals, 11(2021), No. 7, art. No. 1137.

  45. Y.S. Sun, Y.X. Han, X.C. Wei, and P. Gao, Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 703.

    Article  CAS  Google Scholar 

  46. R. Sah and S.K. Dutta, Kinetic studies of iron ore-coal composite pellet reduction by TG—DTA, Trans. Indian Inst. Met., 64(2011), No. 6, p. 583.

    Article  CAS  Google Scholar 

  47. Z.C. Huang, K. Wu, B. Hu, H. Peng, and T. Jiang, Non-isothermal kinetics of reduction reaction of oxidized pellet under microwave irradiation, J. Iron Steel Res. Int., 19(2012), No. 1, p. 1.

    Article  Google Scholar 

  48. M.C. Goswami, S. Prakash, and S.B. Sarkar, Kinetics of smelting reduction of fluxed composite iron ore pellets, Steel Res., 70(1999), No. 2, p. 41.

    Article  CAS  Google Scholar 

  49. A.A. El-Geassy, M.H. Khedr, M.I. Nasr, and M.S. Aly, Behaviour of iron ore—fuel oil composite pellets in isothermal and non-isothermal reduction conditions, Ironmaking Steelmaking, 28(2001), No. 3, p. 237.

    Article  CAS  Google Scholar 

  50. A. Chatterjee, Role of particle size in mineral processing at Tata Steel, Int. J. Miner. Process., 53(1998), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  51. T. Leißner, T. Mütze, K. Bachmann, S. Rode, J. Gutzmer, and U.A. Peuker, Evaluation of mineral processing by assessment of liberation and upgrading, Miner. Eng., 53(2013), p. 171.

    Article  Google Scholar 

  52. H.Y. Tian, Z.Q. Guo, R.N. Zhan, J. Pan, D.Q. Zhu, C.C. Yang, L.T. Pan, and X.Z. Huang, Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1164.

    Article  CAS  Google Scholar 

  53. P. Gao, Y.X. Han, Y.J. Li, and Y.S. Sun, Evaluation on deep reduction of iron ore based on digital image processing techniques, J. Northeast. Univ. Nat. Sci., 33(2012), No. 1, p. 133.

    CAS  Google Scholar 

  54. P. Gao, Y.S. Sun, D.Z. Ren, and Y.X. Han, Growth of metallic iron particles during coal-based reduction of a rare earths-bearing iron ore, Min. Metall. Explor., 30(2013), No. 1, p. 74.

    CAS  Google Scholar 

  55. J.W. Yu, Y.H. Qin, P. Gao, Y.S. Sun, and S.B. Ma, The growth characteristics and kinetics of metallic iron in coal-based reduction of Jinchuan ferronickel slag, Minerals, 11(2021), No. 8, art. No. 876.

  56. X.M. Li, Y. Li, X.Y. Zhang, Z.Y. Wen, and X.D. Xing, Growth characteristics of metallic iron particles in the direct reduction of nickel slag, Metall. Mater. Trans. B, 51(2020), No. 3, p. 925.

    Article  CAS  Google Scholar 

  57. Z.H. Ma, J.Z. Zhang, W. Li, and J. Chen, Study on deep reduction of oolitic hematite assisted with microwave radiation, Adv. Mater. Res., 941–944(2014), p. 2574.

    Article  Google Scholar 

  58. H.Y. Zhao, Y.L. Chen, and X.Q. Duan, Study on the factors affecting the deep reduction of coal gangue containing high contents of iron and sulfur, Fuel, 288(2021), art. No. 119571.

  59. P. Gao, W.T. Zhou, Y.X. Han, Y.J. Li, and C.W. Zhang, Influence mechanisms of additives on coal-based reduction of complex refractory iron ore, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 1.

    Article  CAS  Google Scholar 

  60. C. Kamijo, M. Hoshi, T. Kawaguchi, H. Yamaoka, and Y.S. Kamei, Production of direct reduced iron by a sheet material inserting metallization method, ISIJ Int., 41(2001), No. Suppl, p. S13.

    Article  CAS  Google Scholar 

  61. S. Priyadarshi, S. Mishra, B. Kumar, and G.G. Roy, Effect of different forms of carbon on the reduction behaviour of iron ore-carbonaceous material composite pellets in multi-layer bed rotary hearth furnace (RHF), Can. Metall. Q., 60(2021), No. 4, p. 281.

    Article  CAS  Google Scholar 

  62. Y.X. Han, Y.S. Sun, P. Gao, Y.J. Li, and Y.F. Mu, Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore, Min. Metall. Explor., 31(2014), No. 3, p. 169.

    CAS  Google Scholar 

  63. Y.S. Sun, Y.X. Han, P. Gao, and Y.F. Mu, Particle size measurement of metallic iron in reduced materials based on optical image analysis, Chem. Eng. Technol., 37(2014), No. 12, p. 2030.

    Article  CAS  Google Scholar 

  64. X. Zhang, G.H. Li, M.J. Rao, H.P. Mi, B.J. Liang, J.X. You, Z.W. Peng, and T. Jiang, Growth of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate, J. Cent. South Univ., 27(2020), No. 5, p. 1484.

    Article  CAS  Google Scholar 

  65. H.F. Yang, L.L. Jing, and C.G. Dang, Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation, Chin. J. Nonferrous Met., 21(2011), No. 5, p. 1165.

    CAS  Google Scholar 

  66. Y.Q. Zhao, T.C. Sun, and Z. Wang, Extraction of iron from refractory titanomagnetite by reduction roasting and magnetic separation, ISIJ Int., 61(2021), No. 1, p. 93.

    Article  CAS  Google Scholar 

  67. L. Zhang, H.H. Chen, R.D. Deng, W.R. Zuo, B. Guo, and J.G. Ku, Growth behavior of iron grains during deep reduction of copper slag, Powder Technol., 367(2020), p. 157.

    Article  CAS  Google Scholar 

  68. Y.X. Han, C.W. Zhang, Y.S. Sun, and P. Gao, Mechanism analysis on deep reduction of complex refractory iron ore promoted by Na2CO3, J. Northeast. Univ. Nat. Sci., 33(2012), No. 11, p. 1633.

    CAS  Google Scholar 

  69. H. Long, Q. Meng, T. Chun, P. Wang, and J. Li, Preparation of metallic iron powder from copper slag by carbothermic reduction and magnetic separation, Can. Metall. Q., 55(2016), No. 3, p. 338.

    Article  CAS  Google Scholar 

  70. D.C. Fan, W. Ni, J.Y. Wang, and K. Wang, Effects of CaO and Na2CO3 on the reduction of high silicon iron ores, J. Wuhan Univ. Technol. Mater Sci Ed, 32(2017), No. 3, p. 508.

    Article  CAS  Google Scholar 

  71. T. Jiang, S.F. Guan, Y. Xia, S.W. Yu, X.X. Xue, R.G. Bai, D.H. Chen, and F.Z. Chang, Research on the coal-based direct reduction of vanadium titanomagenetite, Adv. Mater. Res., 753–755(2013), p. 16.

    Article  Google Scholar 

  72. Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938.

    Article  Google Scholar 

  73. Y.Y. Zhang, Q.G. Xue, G. Wang, and J.S. Wang, Gasification and migration of phosphorus from high-phosphorus iron ore during carbothermal reduction, ISIJ Int., 58(2018), No. 12, p. 2219.

    Article  CAS  Google Scholar 

  74. S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908.

    Article  CAS  Google Scholar 

  75. H.F. Yang, L.L. Jing, and B.G. Zhang, Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation, J. Hazard. Mater., 185(2011), No. 2–3, p. 1405.

    Article  CAS  Google Scholar 

  76. S.J. Bai, S.M. Wen, D.W. Liu, W.B. Zhang, and Q.B. Cao, Beneficiation of high phosphorus limonite ore by sodium-carbonate-added carbothermic reduction, ISIJ Int., 52(2012), No. 10, p. 1757.

    Article  CAS  Google Scholar 

  77. W. Yu, T.C. Sun, J. Kou, Y.X. Wei, C.Y. Xu, and Z.Z. Liu, The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets, ISIJ Int., 53(2013), No. 3, p. 427.

    Article  CAS  Google Scholar 

  78. D.Q. Zhu, T.J. Chun, J. Pan, L.M. Lu, and Z. He, Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 505.

    Article  CAS  Google Scholar 

  79. A. Basumallick, Influence of CaO and Na2CO3 as additive on the reduction of hematite—lignite mixed pellets, ISIJ Int., 35(1995), No. 9, p. 1050.

    Article  CAS  Google Scholar 

  80. S.J. Bai, C. Lv, S.M. Wen, D.W. Liu, W.B. Zhang, and Q.B. Cao, Effects of sodium carbonate on the carbothermic reduction of siderite ore with high phosphorus content, Min. Metall. Explor., 30(2013), No. 2, p. 100.

    CAS  Google Scholar 

  81. Z. Zulhan and W. Shalat, Evolution of ferronickel particles during the reduction of low-grade saprolitic laterite nickel ore by coal in the temperature range of 900–1250°C with the addition of CaO—CaF2—H3BO3, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 612.

    Article  CAS  Google Scholar 

  82. W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, and T. Chen, Iron extraction from red mud using roasting with sodium salt, Miner. Process. Extr. Metall. Rev., 42(2021), No. 3, p. 153.

    Article  Google Scholar 

  83. G.H. Li, S.H. Zhang, M.J. Rao, Y.B. Zhang, and T. Jiang, Effects of sodium salts on reduction roasting and Fe—P separation of high-phosphorus oolitic hematite ore, Int. J. Miner. Process., 124(2013), p. 26.

    Article  CAS  Google Scholar 

  84. D. Zinoveev, P. Grudinsky, A. Zakunov, A. Semenov, M. Panova, D. Valeev, A. Kondratiev, V. Dyubanov, and A. Petelin, Influence of Na2CO3 and K2CO3 addition on iron grain growth during carbothermic reduction of red mud, Metals, 9(2019), No. 12, art. No. 1313.

  85. P.I. Grudinskii, V.G. Dyubanov, D.V. Zinoveev, and M.V. Zheleznyi, Solid-phase reduction and iron grain growth in red mud in the presence of alkali metal salts, Russ. Metall. Met., 2018(2018), No. 11, p. 1020.

    Article  Google Scholar 

  86. Y.Q. Zhao, T.C. Sun, H.Y. Zhao, X.H. Li, and X.P. Wang, Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore, ISIJ Int., 58(2018), No. 10, p. 1768.

    Article  CAS  Google Scholar 

  87. S.I. Rudyuk, É.I. Fel’dman, E.I. Chernov, and V.F. Korobeinik, Effect of sulfur and phosphorus on the properties of steel 18B, Met. Sci. Heat Treat., 16(1974), No. 12, p. 1056.

    Article  Google Scholar 

  88. V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sādhanā, 28(2003), No. 3–4, p. 359.

    Article  CAS  Google Scholar 

  89. M.S. Najjar and D.Y. Jung, High temperature desulfurization of synthesis gas with iron compounds, Fuel Process. Technol., 44(1995), No. 1–3, p. 173.

    Article  CAS  Google Scholar 

  90. J.P. Jin, W.T. Zhou, Y.S. Sun, Y.X. Han, and Y.J. Li, Reaction characteristics and existing form of phosphorus during coal-based reduction of oolitic iron ore, Minerals, 11(2021), No. 3, art. No. 247.

  91. S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and C.Y. Xu, The mechanism of CaCO3 in the gas-based direct reduction of a high-phosphorus oolitic iron ore, Physicochem. Probl. Miner. Process., 57(2021), No. 4, p. 117.

    Article  CAS  Google Scholar 

  92. S.J. Bai, S.M. Wen, D.W. Liu, W.B. Zhang, and Y.J. Xian, Catalyzing carbothermic reduction of siderite ore with high content of phosphorus by adding sodium carbonate, ISIJ Int., 51(2011), No. 10, p. 1601.

    Article  CAS  Google Scholar 

  93. Y.L. Li, T.C. Sun, C.Y. Xu, and Z.H. Liu, New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting, J. Cent. South Univ. Sci. Technol., 43(2012), No. 3, p. 827.

    CAS  Google Scholar 

  94. C.Y. Xu, T.C. Sun, J. Kou, Y.L. Li, X.L. Mo, and L.G. Tang, Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2806.

    Article  CAS  Google Scholar 

  95. Y. Xu, T.C. Sun, Z.G. Liu, and C.Y. Xu, Phosphorus occurrence state and phosphorus removal research of a high phosphorous oolitic hematite by direct reduction roasting method, J. Northeast. Univ. Nat. Sci., 34(2013), No. 11, p. 1651.

    CAS  Google Scholar 

  96. D.W. Yang, T.C. Sun, H.F. Yang, C.Y. Xu, C.Y. Qi, and Z.X. Li, Dephosphorization mechanism in a roasting process for direct reduction of high-phosphorus oolitic hematite in west Hubei Province, China, J. Univ. Sci. Technol. Beijing, 32(2010), No. 8, p. 968.

    CAS  Google Scholar 

  97. H. Ishikawa, J. Kopfle, J. McClelland, and J. Ripke, Rotary hearth furnace technologies for iron ore and recycling applications, Arch. Metall. Mater., 53(2008), No. 2, p. 541.

    CAS  Google Scholar 

  98. Y.Y. Zhang, Y.H. Qi, Z.S. Zou, and Y.G. Li, Development prospect of rotary hearth furnace process in China, Adv. Mater. Res., 746(2013), p. 533.

    Article  Google Scholar 

  99. J. Zhang, H.M. Zhou, Y.H. Qi, and D.L. Yan, A Kind of Iron-making Method of Carbon-thermal Pre-reduction, Gas-based Deep Reduction and Synchronous Cooling, Chinese Patent, Appl. 202010246783.7, 2020.

  100. R.H. Zhong, L.Y. Yi, Z.C. Huang, W. Cai, and X. Jiang, Highly efficient beneficiation of low-grade iron ore via ore-coal composite-fed rotary kiln reduction: Pilot-scale study, JOM, 72(2020), No. 4, p. 1680.

    Article  CAS  Google Scholar 

  101. Z.K. Liang, L.Y. Yi, Z.C. Huang, B. Lu, X. Jiang, W. Cai, B.Z. Tian, and Y.Y. Jin, Insight of iron ore-coal composite reduction in a pilot scale rotary kiln: A post-mortem study, Powder Technol., 356(2019), p. 691.

    Article  CAS  Google Scholar 

  102. H. Tsuji, Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in a rotary kiln for production of ferronickel alloy, ISIJ Int., 52(2012), No. 6, p. 1000.

    Article  CAS  Google Scholar 

  103. H.Y. Wang, K.Q. Li, W. Ni, X.Y. Huang, and Y. Jia, Experimental research of deep reduction and magnetic separation process of a high-iron copper slag, Met. Mine, 41(2012), No. 11, p. 141.

    CAS  Google Scholar 

  104. S. Wang, W. Ni, C.L. Wang, D.Z. Li, and H.Y. Wang, Study of deep reduction process for iron recovery from copper slag tailings, Met. Mine, 43(2014), No. 3, p. 156.

    Google Scholar 

  105. S.W. Zhou, Y.G. Wei, B. Li, and H. Wang, Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant, J. Clean. Prod., 217(2019), p. 423.

    Article  CAS  Google Scholar 

  106. M. Archambo and S.K. Kawatra, Red mud: Fundamentals and new avenues for utilization, Miner. Process. Extr. Metall. Rev., 42(2021), No. 7, p. 427.

    Article  CAS  Google Scholar 

  107. X. Liu, Y.X. Han, F.Y. He, P. Gao, and S. Yuan, Characteristic, hazard and iron recovery technology of red mud—A critical review, J. Hazard. Mater., 420(2021), art. No. 126542.

  108. Z.C. Huang, L.B. Cai, Y.B. Zhang, Y.B. Yang, and T. Jiang, Reduction of iron oxides of red mud reinforced by Na2CO3 and CaF2, J. Cent. South Univ. Sci. Technol., 41(2010), No. 3, p. 838.

    CAS  Google Scholar 

  109. T.J. Chun, D.Q. Zhu, J. Pan, and Z. He, Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation, Can. Metall. Q., 53(2014), No. 2, p. 183.

    Article  CAS  Google Scholar 

  110. S. Agrawal, V. Rayapudi, and N. Dhawan, Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values, Miner. Eng., 132(2019), p. 202.

    Article  CAS  Google Scholar 

  111. J. Pan, G.L. Zheng, D.Q. Zhu, and X.L. Zhou, Utilization of nickel slag using selective reduction followed by magnetic separation, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3421.

    Article  CAS  Google Scholar 

  112. S.B. Ma, and Y.X. Han, Study of extracting valuable metals from nickel smelting slag by a coal-based reduction method, J. China Univ. Min. Technol., 43(2014), No. 2, p. 305.

    CAS  Google Scholar 

  113. P. Gao, G.F. Li, Y.X. Han, and Y.S. Sun, Reaction behavior of phosphorus in coal-based reduction of an oolitic hematite ore and pre-dephosphorization of reduced iron, Metals, 6(2016), No. 4, art. No. 82.

  114. L. Li, Study on acid hydrolysis process of deep reduction slag of panzhihua V-timagnetite, Inorg. Chem. Ind., 42(2010), No. 6, p. 52.

    Google Scholar 

  115. Z.C. Cao, T.C. Sun, X. Xue, and Z.H. Liu, Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process, Minerals, 6(2016), No. 4, art. No. 119.

  116. S. Liang, X.P. Liang, and Q. Tang, Treatment of secondary dust produced in rotary hearth furnace through alkali leaching and evaporation—crystallization processes, Processes, 8(2020), No. 4, art. No. 396.

  117. H. Tsutsumi, S. Yoshida, and M. Tetsumoto, Features of FASTMET process, KOBELCO Technol. Rev., 2010, No. 29, p. 85.

  118. B. Kumar, S. Mishra, G.G. Roy, and P.K. Sen, Estimation of carbon dioxide emissions in rotary hearth furnace using a thermodynamic model, Steel Res. Int., 88(2017), No. 5, art. No. 1600265.

  119. S.H. Zhang, G. Wang, H. Zhang, J.S. Wang, and Q.G. Xue, Effect of gangue composition on iron nugget production from iron ore-coal composite pellet, J. Iron Steel Res. Int., 26(2019), No. 9, p. 917.

    Article  CAS  Google Scholar 

  120. T. Matsumura, Y. Takenaka, M. Shimizu, T. Negami, I. Kobayashi, and A. Uragami, The reduction and melting behavior of carbon composite iron ore pellet on high temperature, Tetsu-to-Hagane, 84(1998), No. 6, p. 405.

    Article  CAS  Google Scholar 

  121. B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(2007), No. 1, p. 40.

    Article  Google Scholar 

  122. B. Anameric and S.K. Kawatra, Laboratory study related to the production and properties of pig iron nuggets, Min. Metall. Explor., 23(2006), No. 1, p. 52.

    CAS  Google Scholar 

  123. I. Sohn and R.J. Fruehan, The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part I. The role and kinetics of volatile reduction, Metall. Mater. Trans. B, 36(2005), No. 5, p. 605.

    Article  Google Scholar 

  124. M. Landfahrer, C. Schluckner, R. Prieler, H. Gerhardter, T. Zmek, J. Klarner, and C. Hochenauer, Development and application of a numerically efficient model describing a rotary hearth furnace using CFD, Energy, 180(2019), p. 79.

    Article  Google Scholar 

  125. C.H. Liu, X.Y. Ding, H.G. Liu, X.L Yan, C. Dong, and J. Wang, Numerical analysis on characteristics of reduction process within a pre-reduction rotary kiln, Metals, 11(2021), No. 8, art. No. 1180.

  126. B.A. Gyamfi, F.F. Adedoyin, M.A. Bein, F.V. Bekun, and D.Q. Agozie, The anthropogenic consequences of energy consumption in E7 economies: Juxtaposing roles of renewable, coal, nuclear, oil and gas energy: Evidence from panel quantile method, J. Clean. Prod., 295(2021), art. No. 126373.

  127. O. Kanat, Z. Yan, M.M. Asghar, Z. Ahmed, H. Mahmood, D. Kirikkaleli, and M. Murshed, Do natural gas, oil, and coal consumption ameliorate environmental quality? Empirical evidence from Russia, Environ. Sci. Pollut. Res. Int., 29(2022), No. 3, p. 4540.

    Article  Google Scholar 

  128. D. Cholico-González, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. García, and C.A. León Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603.

    Article  Google Scholar 

  129. J.P. Birat, J.P. Vizioz, Y. de Lassat de Pressigny, M. Schneider, and M. Jeanneau, CO2 emissions and the steel industry’s available responses to the greenhouse effect, Rev. Met. Paris, 96(1999), No. 10, p. 1203.

    Article  CAS  Google Scholar 

  130. V.G. Lisienko, Y.N. Chesnokov, A.V. Lapteva, and V.Y. Noskov, Types of greenhouse gas emissions in the production of cast iron and steel, IOP Conf. Ser.: Mater. Sci. Eng., 150(2016), art. No. 012023.

  131. Q.Q. Chen, Y. Gu, Z.Y. Tang, W. Wei, and Y.H. Sun, Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China, Appl. Energy, 220(2018), p. 192.

    Article  CAS  Google Scholar 

  132. W.R. Zhang, Y.O. Zhou, Z. Gong, J.J Kang, C.H Zhao, Z.X Meng, J. Zhang, T. Zhang, and J.H Yuan, Quantifying stranded assets of the coal-fired power in China under the Paris Agreement target, Clim. Policy, 2021. DOI: https://doi.org/10.1880/14693062.2021.1953433

  133. Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626.

    Article  CAS  Google Scholar 

  134. L. Ren, S. Zhou, T.D. Peng, and X.M. Ou, A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China, Renewable Sustainable Energy Rev., 143(2021), art. No. 110846.

  135. J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713.

    Article  CAS  Google Scholar 

  136. L.Y. Liu, H.G. Ji, X.F. Lü, T. Wang, S. Zhi, F. Pei, and D.L. Quan, Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513.

    Article  CAS  Google Scholar 

  137. K. Rechberger, A. Spanlang, A. Sasiain Conde, H. Wolfmeir, and C. Harris, Green hydrogen-based direct reduction for low-carbon steelmaking, Steel Res. Int., 91(2020), No. 11, art. No. 2000110.

  138. Y.B. Chen, W.G. Liu, and H.B. Zuo, Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1862.

    Article  CAS  Google Scholar 

  139. A. Bhaskar, M. Assadi, and H.N. Somehsaraei, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13(2020), No. 3, art. No. 758.

  140. Z.Y. Chen, C. Zeilstra, J. van der Stel, J. Sietsma, and Y.X. Yang, Review and data evaluation for high-temperature reduction of iron oxide particles in suspension, Ironmak. Steelmak., 47(2020), No. 7, p. 741.

    Article  CAS  Google Scholar 

  141. Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751.

  142. A.G. Olabi, A.S. bahri, A.A. Abdelghafar, A. Baroutaji, E.T. Sayed, A.H. Alami, H. Rezk, and M. A. Abdelkareem, Large-vscale hydrogen production and storage technologies: Current status and future directions, Int. J. Hydrogen Energy, 46(2021), No. 45, p. 23498.

    Article  CAS  Google Scholar 

  143. C. Tarhan and M.A. Çil, A study on hydrogen, the clean energy of the future: Hydrogen storage methods, J. Energy Storage, 40(2021), art. No. 102676.

  144. R.R. Wang, Y.Q. Zhao, A. Babich, D. Senk, and X.Y. Fan, Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities, J. Clean. Prod., 329(2021), art. No. 129797.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52022019), the National Key R&D Program of China (No. 2021YFC2901000), and the Fok Ying Tung Education Foundation (No. 161045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Sun.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Sun, Y., Han, Y. et al. Review on coal-based reduction and magnetic separation for refractory iron-bearing resources. Int J Miner Metall Mater 29, 2087–2105 (2022). https://doi.org/10.1007/s12613-021-2408-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2408-x

Keywords

Navigation