Skip to main content
Log in

Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings. Optimal process parameters, such as re-ductant and additive ratios, reduction temperature, and reduction time, were experimentally determined and found to be as follows: a limestone ratio of 25%, a bitumite ratio of 30%, and reduction roasting at 1473 K for 90 min. Under these conditions, copper-bearing iron powders (CIP) with an iron content of 90.11% and copper content of 0.86%, indicating iron and copper recoveries of 87.25% and 83.44% respectively, were effectively obtained. Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron, which was difficult to achieve the separation of these two metals. Thus, the copper went into magnetic products by magnetic separation. Adding copper into the steel can produce weathering steel. Therefore, the CIP can be used as an inexpensive raw material for weathering steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Sun, Z. L. Huang, N. Yang, Y. F. Liu, C. P. Jiao, Mining Research and Development 36 (2016) No. 3, 68–71 (in Chinese).

    Google Scholar 

  2. G. Bipra, J. R. K. Premchand, Resour. Conserv. Recycl. 39 (2003) 299–313.

    Article  Google Scholar 

  3. C. J. Shia, C. Meyerb, A. Behnoodc, Resour. Conserv. Recycl. 52 (2008) 1115–1121.

    Article  Google Scholar 

  4. K. S. Al-Jabri, M. Hisada, S. K. Al-Oraimi, A. H. Al-Saidy, Cem. Concr. Compos. 31 (2009) 483–488.

    Article  Google Scholar 

  5. J. C. Castilla, Environ. Monit. Assess. 40 (1996) 171–184.

    Article  Google Scholar 

  6. B. S. Thomas, A. Damare, R. C. Gupta, Constr. Build. Mater. 48 (2013) 894–901.

    Article  Google Scholar 

  7. M. M. Antonijevié, M. D. Dimitrijevié, Z. O. Stevanovié, S. M. Serbula, G. D. Bogdanovic, J. Hazard. Mater. 158 (2008) 23–34.

    Article  Google Scholar 

  8. Z. Q. Guo, D. Q. Zhu, J. Pan, T. J. Wu, F. Zhang, Metals 6 (2016) No. 4, 86–92.

    Article  Google Scholar 

  9. C. S. Zhang, T. T. Zhou, Q. S. Wu, H. J. Zhu, P. Xu, Chem. -Asian J. 26 (2014) 1371–1375.

    Google Scholar 

  10. H. Y. Cao, N. X. Fu, C. G. Wang, L. Zhang, F. S. Xia, Z. T. Sui, N. X. Feng, Multipurpose Utilization of Mineral Resources (2009) No. 1, 8–11.

    Google Scholar 

  11. J. Shahu, S. Patel, A. Senapati, J. Mater. Civ. Eng. 25 (2013) 1871–1879.

    Article  Google Scholar 

  12. W. C. Liu, J. K. Yang, B. Xiao, J. Hazard. Mater. 161 (2009) 474–478.

    Article  Google Scholar 

  13. C. Li, H. H. Sun, J. Bai, L. T. Li, J. Hazard. Mater. 174 (2010) 71–77.

    Article  Google Scholar 

  14. H. F. Yang, L. L. Jing, B. G. Zhang, J. Hazard. Mater. 185 (2011) 1405–1411.

    Article  Google Scholar 

  15. Z. Q. Gong, S. Gong, B. Zhou, Mining and Metallurgical Engineering 26 (2006) No. 1, 45–48 (in Chinese).

    Google Scholar 

  16. W. P. Jin, C. A. Joong, H. Song, Resour. Conserv. Recycl. 34 (2002) 129–140.

    Article  Google Scholar 

  17. H. G. Dong, Y. F. Guo, T. Jiang, Mining and Metallurgical Engineering 28 (2008) No. 1, 37–45 (in Chinese).

    Google Scholar 

  18. B. Xu, E. Wang, J. Yang, Conservation and Utilization of Mineral Resources 3 (2007) No. 1, 51–59.

    Google Scholar 

  19. W. Yu, T. C. Sun, Q. Cui, C. Y. Xu, J. Kou, ISIJ Int. 55 (2015) 536–544.

    Article  Google Scholar 

  20. Q. C. Zhang, J. S. Wu, J. J. Wang, W. L. Zheng, J. G. Chen, A. B. Li, Mater. Chem. Phys. 77 (2003) 603–608.

    Article  Google Scholar 

  21. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 48 (2006) 2799–2812.

    Article  Google Scholar 

  22. C. L. Zhang, D. Y. Cai, B. Liao, T. C. Zhao, Y. C. Fan, Mater. Lett. 58 (2004) 1524–1529.

    Article  Google Scholar 

  23. E. X. Gao, T. C. Sun, Z. G. Liu, C. Geng, C. Y. Xu, J. Iron Steel Res. Int. 23 (2016) 428–432.

    Article  Google Scholar 

  24. K. Maweja, T. Mukongo, I. Mutombo, J. Hazard. Mater. 164 (2009) 856–862.

    Article  Google Scholar 

  25. X. G. Huang, Iron and Steel Metallurgy Principles, 2nd ed., Metallurgy Industry Press, Beijing, 2011 (in Chinese).

    Google Scholar 

  26. J. Moon, V. Sahajwalla, Metall. Mater. Trans. B 37 (2006) 215–223.

    Article  Google Scholar 

  27. W. Yu, T. C. Sun, J. Kou, Y. X. Wei, C. Y. Xu, Z. G. Liu, ISIJ Int. 53 (2013) 427–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-jun Wang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, C., Wang, Hj., Hu, Wt. et al. Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation. J. Iron Steel Res. Int. 24, 991–997 (2017). https://doi.org/10.1016/S1006-706X(17)30145-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30145-0

Key words

Navigation