Skip to main content
Log in

Mn evaporation and denitrification behaviors of molten Mn steel in the vacuum refining with slag process

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Considering the precise composition control on the vacuum refining of high-Mn steel, the behaviors of both Mn evaporation and nitrogen removal from molten Mn steel were investigated via vacuum slag refining in a vacuum induction furnace. It was found that the reaction interfaces of denitrification and Mn evaporation tend to migrate from the surface of slag layer to the surface of molten steel with the gradual exposure of molten steel during the vacuum slag refining process. Significantly, compared with the experimental group without slag addition, the addition of slag into steel can result in a lower Mn evaporation rate constant of 0.0192 cm·min−1 at 370 Pa, while the denitrification rate is almost not affected. Besides, the slag has a stronger inhibitory effect on Mn evaporation than the reduced vacuum pressure. Moreover, the inhibitory effect of the slag layer on Mn evaporation can be weakened with the increase of the initial Mn content in molten steel. The slag layer can work as an inhibitory layer to reduce the Mn evaporation from molten steel, the evaporation reaction of Mn mainly proceeds on the surface of the molten steel. This may be attributed to the Mn mass transfer coefficient for one of reaction at steel/slag interface, mass transfer in molten slag, and evaporation reaction at slag/gas interface is lower than that of evaporation reaction at steel/gas interface. The introduction of slag is proposed for both denitrification and manganese control during the vacuum refining process of Mn steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.H. Wen, H.B. Peng, H.T. Si, R.L. Xiong, and D. Raabe, A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel, Mater. Des., 55(2014), p. 798.

    Article  CAS  Google Scholar 

  2. T. Allam, X.F. Guo, M. Lipińska-Chwałek, A.S. Hamada, E. Ahmed, and W. Bleck, Impact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel, J. Mater. Res. Technol., 9(2020), No. 6, p. 13524.

    Article  CAS  Google Scholar 

  3. Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422.

    Article  CAS  Google Scholar 

  4. S. Sevsek, F. Brasche, D.A. Molodov, and W. Bleck, On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels, Mater. Sci. Eng. A, 754(2019), p. 152.

    Article  CAS  Google Scholar 

  5. M. Daamen, B. Wietbrock, S. Richter, and G. Hirt, Strip casting of a high-manganese steel (FeMn22C0.6) compared with a process chain consisting of ingot casting and hot forming, Steel Res. Int., 82(2011), No. 1, p. 70.

    Article  CAS  Google Scholar 

  6. M. Alba, M. Nabeel, and N. Dogan, Effect of aluminium content on the formation of inclusions in Fe-5Mn-xAl steels, Ironmaking Steelmaking, 48(2021), No. 4, p. 379.

    Article  CAS  Google Scholar 

  7. Z.Y. Liu, Y.P. Bao, M. Wang, X. Li, and F.Z. Zeng, Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 282.

    Article  CAS  Google Scholar 

  8. L.Z. Kong, Z.Y. Deng, L. Cheng, and M.Y. Zhu, Reaction behaviors of Al-killed medium-manganese steel with glazed MgO refractory, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3522.

    Article  CAS  Google Scholar 

  9. C.F. Redeker, D. Rohrberg, J. Schöttler, J. Kroos, and K.H. Spitzer, Metallurgical methods for the production of steels with high manganese contents in the range of 12 to 25%wt, [in] The 2nd CSM-VDEh-Seminar on Metallurgical Fundamentals, Düsseldorf, Germany, 2007.

  10. R. Elliott, K. Coley, S. Mostaghel, and M. Barati, Review of manganese processing for production of TRIP/TWIP steels, part 1: Current practice and processing fundamentals, JOM, 70(2018), No. 5, p. 680.

    Article  CAS  Google Scholar 

  11. V. Hernandez, S. Mostaghel, S. Ge, C. Harris, and M. Cramer, Innovative and economical approach for the production of mid- and high-manganese steel, [in] AIS Technology Conference Proceedings, Pittsburgh, 2016.

  12. J.L. Guo, L.H. Zhao, Y.P. Bao, S. Gao, and M. Wang, Carbon and oxygen behavior in the RH degasser with carbon powder addition, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 681.

    Article  CAS  Google Scholar 

  13. J.H. Chu, Y.P. Bao, X. Li, M. Wang, and F. Gao, Kinetic study of Mn vacuum evaporation from Mn steel melts, Sep. Purif. Technol., 255(2021), art. No. 117698.

  14. A. Rafiei, G.A. Irons, and K.S. Coley, Argon-oxygen decarburization of high-manganese steels: Effect of temperature, Alloy composition, and submergence depth, Steel Res. Int., 92(2021), No. 1, art. No. 2000480.

  15. H.B. Liu, J.H. Liu, S. Johannes, F.M. Penz, L. Sun, R.Z. Zhang, and Z.G. An, Effect of CO2 and O2 mixed injection on the decarburization and manganese retention in high-Mn twinning-induced plasticity steels, Metall. Mater. Trans. B, 51(2020), No. 2, p. 756.

    Article  CAS  Google Scholar 

  16. S. Hoile, Processing and properties of mild interstitial free steels, Mater. Sci. Technol., 16(2000), No. 10, p. 1079.

    Article  CAS  Google Scholar 

  17. M. Takahashi, Development of high strength steels for automobiles, Nippon Steel Tech. Rep., 2003, No. 88, p. 2.

  18. L.F. Zhang, State of the art in the control of inclusions in tire cord steels—A review, Steel Res. Int., 77(2006), No. 3, p. 158.

    Article  CAS  Google Scholar 

  19. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen, Acta Mater., 49(2001), No. 19, p. 3919.

    Article  CAS  Google Scholar 

  20. V. Vats, T. Baskaran, and S.B. Arya, Tribo-corrosion study of nickel-free, high nitrogen and high manganese austenitic stainless steel, Tribol. Int., 119(2018), p. 659.

    Article  CAS  Google Scholar 

  21. J.H. Shin, J. Lee, D.J. Min, and J.H. Park, Solubility of nitrogen in high manganese steel (HMnS) melts: Interaction parameter between Mn and N, Metall. Mater. Trans. B, 42(2011), No. 6, p. 1081.

    Article  CAS  Google Scholar 

  22. H.J. Wu, Q.Q. Li, Z. Wang, and F.J. Jiang, Vacuum denitrification and nitrogen absorption of molten steel under ultra-low nitrogen conditions, Mater. Sci. Technol., 35(2019), No. 2, p. 240.

    Article  CAS  Google Scholar 

  23. K. Qian, B. Chen, L. Zhang, Z.H. Du, and K. Liu, Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting, Vacuum, 179(2020), art. No. 109521.

  24. B. Chen, Z.H. Du, K. Liu, X.J. Zhang, and Z.H. Wang, Study on the denitrogenization kinetics of uranium during electron beam cold hearth refining, Vacuum, 172(2020), art. No. 109014.

  25. Y.T. Xu, Z.P. Chen, and G. Zhang, Kinetic model of decarburization and denitrogenation in vacuum oxygen decarburization process for ferritic stainless steel, Metall. Mater. Trans. B, 40(2009), No. 3, p. 345.

    Article  Google Scholar 

  26. G.G. Cheng, P. Zhao, L.S. Liu, and X.H. Ma, Mechanism of nitrogen absorption affected by surface active elements in molten steel, Res. Iron Steel, 25(1997), No. 2, p. 3.

    Google Scholar 

  27. Q.G. Zhang, Theoretical research on effect of oxygen content in liquid steel on nitrogen absorption, Steelmaking, 2003, No. 6, p. 25.

  28. K. Ito, K. Amano, and H. Sakao, Kinetic study on nitrogen absorption and desorption of molten iron, Trans. Iron Steel Inst. Jpn., 28(1988), No. 1, p. 41.

    Article  CAS  Google Scholar 

  29. J. Li, J. Fu, L. Di, D.G. Zhou, B.P. Chen, B.W. Feng, C.J. Tu, and Z.M. Zhang, Study on effect of soluble oxygen on nitrogen absorption of liquid steel, Iron Steel, 2002, No. 4, p. 19.

  30. R. Yamanaka, K. Ogawa, H. Iritani, and S. Koyama, Denitrogenization mechanism from molten steel by flux treatment, ISIJ Int., 32(1992), No. 1, p. 136.

    Article  CAS  Google Scholar 

  31. Y.X. Dai, J. Li, C.B. Shi, and W. Yan, Dephosphorization of high silicon hot metal based on double slag converter steelmaking technology, Ironmaking Steelmaking, 48(2021), No. 4, p. 447.

    Article  CAS  Google Scholar 

  32. S.H. Chen, M. Jiang, X.F. He, and X.H. Wang, Top slag refining for inclusion composition transform control in tire cord steel, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 490.

    Article  CAS  Google Scholar 

  33. L.H. Zhao, L. Lin, and Q.F. Wu, Experimental study on sulfur removal from ladle furnace refining slag in hot state by blowing air, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 33.

    Article  CAS  Google Scholar 

  34. H.X. Yu, D.X. Yang, M.M. Li, and N. Zhang, Effects of Al addition on the reaction between high-manganese steel and CaO-SiO2-Al2O3-MgO slag, Steel Res. Int., 91(2020), No. 10, art. No. 2000143.

  35. Z.Y. Deng, L.Z. Kong, D. Liang, and M.Y. Zhu, Reaction of Al-killed manganese steel with ladle slag, Steel Res. Int., 90(2019), No. 5, art. No. 1800480.

  36. J.H. Chu, Y.P. Bao, X. Li, F. Gao, and M. Wang, Characterization of oxidation behavior of Mn fumes generated in the vacuum treatment of melting Mn steels, Steel Res. Int., 92(2021), No. 1, art. No. 2000333.

  37. J.Y. Zhao, H.W. Yang, C.B. Nan, B. Yang, D.C. Liu, and B.Q. Xu, Kinetics of Pb evaporation from Pb-Sn liquid alloy in vacuum distillation, Vacuum, 141(2017), p. 10.

    Article  CAS  Google Scholar 

  38. Z.M. Chen, J.X. Liu, and R. Li, Simulation and property prediction of MgO-FeO-MnO solid solution in steel slag, Mater. Lett., 273(2020), art. No. 127930.

  39. L.Z. Kong, Z.Y. Deng, and M.Y. Zhu, Reaction behaviors of Al-killed medium-manganese steel with different refractories, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1444.

    Article  CAS  Google Scholar 

  40. Y.G. Yu, B.P. Chen, Y.G. Wang, B.H. Tu, and J. Fu, Evaporation of trace bismuth during vacuum melting of steel, J. Univ. Sci. Technol. Beijing, 16(1994), No. 6, p. 522.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51874021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ping Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Jh., Bao, Yp. Mn evaporation and denitrification behaviors of molten Mn steel in the vacuum refining with slag process. Int J Miner Metall Mater 28, 1288–1297 (2021). https://doi.org/10.1007/s12613-021-2311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2311-5

Keywords

Navigation