Skip to main content
Log in

Variation and optimization of acid-dissolved aluminum content in stainless steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization (VOD) deoxidation refining in a 40-t electric arc furnace + VOD + ingot casting process was analyzed and optimized on the basis of Al deoxidation of stainless steel and thermodynamic equilibrium reactions between the slag and steel. Under good stirring conditions in VOD, the deoxidation reaction reaches equilibrium rapidly, and the oxygen activity in the bulk steel is controlled by the slag composition and Al content. A basicity of 3–5 and an Al content greater than 0.015wt% in the melt resulted in an oxygen content less than 0.0006wt%. In addition, the dissolved oxygen content decreased slightly when the Al content in the steel was greater than 0.02wt%. Because of the equilibrium of the Si–O reaction between the slag and steel, the activity of SiO2 will increase while the Si content increases; thus, the Si content should be lowered to enable the formation of a high-basicity slag. A high-basicity, low-Al2O3 slag and an increased Si content will reduce the Al consumption caused by SiO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Mesa, A. Toro, A. Sinatora, and A.P. Tschiptschin, The effect of testing temperature on corrosion-erosion resistance of martensitic stainless steels, Wear, 255(2003), No. 1-6, p. 139.

    Article  Google Scholar 

  2. Z.Y. Yang, Z.B. Liu, J.X. Liang, Y.Q. Sun, and W.H. Li, Development of maraging stainless steel, Trans. Mater. Heat Treat., 29(2008), No. 4, p. 1.

    Google Scholar 

  3. H. Ohta and H. Suito, Thermodynamics of aluminum and manganese deoxidation equilibria in Fe-Ni and Fe-Cr alloys, ISIJ Int., 43(2003), No. 9, p. 1301.

    Article  Google Scholar 

  4. H. Todoroki and K. Mizuno, Effect of silica in slag on inclusion compositions in 304 stainless steel, deoxidized with aluminum, ISIJ Int., 44(2004), No. 8, p. 1350.

    Article  Google Scholar 

  5. W.Y. Cha, D.S. Kim, Y.D. Lee, and J.J. Pak, A thermody namic study on the inclusion formation in ferritic stainless steel melt, ISIJ Int., 44(2004), No. 7, p. 1134.

    Article  Google Scholar 

  6. J.H. Park, Thermodynamic investigation on the formation of inclusions containing MgAl2O4 spinel during 16Cr-14Ni austenitic stainless steel manufacturing processes, Mater. Sci. Eng. A, 472(2008), No. 1-2, p. 43.

    Article  Google Scholar 

  7. J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, and P.K. Yang, Formation mechanism of Ca-Si-Al-Mg-Ti-O inclusions in type 304 stainless steel, ISIJ Int., 36(1996), Suppl., p. S140.

    Article  Google Scholar 

  8. Y.H. Sun, Y.N. Zeng, R. Xu, and K.K. Cai, Formation mechanism and control of MgO-Al2O3 inclusions in non-oriented silicon steel, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1068.

    Article  Google Scholar 

  9. Z.Y. Deng and M.Y. Zhu, Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process, ISIJ Int., 53(2013), No. 3, p. 450.

    Article  Google Scholar 

  10. K. Suzuki, S. Ban-Ya, and M. Hino, Deoxidation equilibrium of Cr-Ni stainless steel with Si at the temperatures from 1823 to 1923 K, ISIJ Int., 42(2002), No. 2, p. 146.

    Article  Google Scholar 

  11. S.B. Lee, J.H. Choi, H.G. Lee, P.C. Rhee, and S.M. Jung, Aluminum deoxidation equilibrium in liquid Fe-16 pct Cr alloy, Metall. Mater. Trans. B, 36(2005), No. 3, p. 414.

    Article  Google Scholar 

  12. H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultra-clean steels, ISIJ Int., 36(1996), No. 5, p. 528.

    Article  Google Scholar 

  13. S. Nurmi, S. Louhenkilpi, and L. Holappa, Optimization of intensified silicon deoxidation, Steel Res. Int., 84(2013), No. 4, p. 323.

    Article  Google Scholar 

  14. H. Ohta and H. Suito, Activities in CaO-SiO2-Al2O3 slags and deoxidation equilibria of Si and Al, Metall. Mater. Trans. B, 27(1996), No. 6, p. 943.

    Article  Google Scholar 

  15. X.H. Wang, M. Jiang, B. Chen, and H.B. Li, Study on formation of non-metallic inclusions with lower melting temperatures in extra low oxygen special steels, Sci. China Technol. Sci., 55(2012), No. 7, p. 1863.

    Article  Google Scholar 

  16. J. Zhang, F.M. Wang, and C.R. Li, Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 647.

    Article  Google Scholar 

  17. FactSage: http://wwwfactsagecom.

  18. G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298.

    Article  Google Scholar 

  19. G.P. Wang, Z.B. Li, and C.L. Liu, Effect of VOD & LF processes on stainless steel cleanliness, [in] The 7th CSM Steel Congress, Beijing, 2009, p. 1262.

    Google Scholar 

  20. D. Guo and G.A. Irons, Modeling of gas-liquid reactions in ladle metallurgy: Part I. Physical modeling, Metall. Mater. Trans. B, 31(2000), No. 6, p. 1447.

    Article  Google Scholar 

  21. K. Yamaguchi, Y. Kishimoto, T. Sakuraya, T. Fujii, M. Aratani, and H. Nishikawa, Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser., ISIJ Int., 32(1992), No. 1, p. 126.

    Article  Google Scholar 

  22. J.D. Seo, S.H. Kim, and K.R. Lee, Thermodynamic assessment of the Al deoxidation reaction in liquid iron, Steel Res. Int, 69(1998), No. 2, p. 49.

    Google Scholar 

  23. H. Itoh, M. Hino, and S. Ban-Ya, Assessment of Al deoxidation equilibrium in liquid iron, Tetsu-to-Hagane, 83(1997), No. 12, p. 773.

    Google Scholar 

  24. Z.Y. Deng and M.Y. Zhu, Deoxidation mechanism of Al-killed steel during industrial refining process, ISIJ Int., 54(2014), No. 7, p. 1498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ping Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lc., Bao, Yp., Wang, M. et al. Variation and optimization of acid-dissolved aluminum content in stainless steel. Int J Miner Metall Mater 23, 408–416 (2016). https://doi.org/10.1007/s12613-016-1250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1250-z

Keywords

Navigation