Skip to main content
Log in

Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Meurling, A. Melander, M. Tidesten, and L. Westin, Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels, Int. J. Fatigue, 23(2001), p.215.

    Article  CAS  Google Scholar 

  2. H. Danninger and B. Weiss, The influence of defects on high cycle fatigue of metallic materials, J. Mater. Process. Technol., 143–144(2003), p.179.

    Article  Google Scholar 

  3. Y. Torres, S. Rodríguez, A. Mateo, M. Anglada, and L. Llanes, Fatigue behavior of powder metallurgy high-speed steel: fatigue limit prediction using a crack growth threshold-based approach, Mater. Sci. Eng. A, 387–389(2004), p.501.

    Google Scholar 

  4. X.S. Wang, L.N. Zhang, Y.P. Zeng, and X.S. Xie, SEM in-situ investigation on fatigue cracking behavior of P/M Rene95 alloy with surface inclusions, J. Univ. Sci. Technol. Beijing, 13(2006), No.13, p.244.

    Article  CAS  Google Scholar 

  5. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, H. Danninger, and B. Weiss, Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steel, Int. J. Mater. Res., 101(2010), p.1140.

    Article  CAS  Google Scholar 

  6. Y. Murakami and M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, Fatigue, 16(1994), p.163.

    Article  CAS  Google Scholar 

  7. J. Tchoufang Tchuindjang and J. Lecomte-Beckers, Fractography survey on high cycle fatigue failure: Crack origin characterization and correlations between mechanical tests and microstructure in Fe-C-Cr-Mo-X alloys, Int. J. Fatigue, 29(2007), p.713.

    Article  Google Scholar 

  8. V. Kazymyroych, J. Ekengren, J. Bergström, and C. Burman, Evaluation of the giga-cycle fatigue strength, crack initiation and growth in high strength H13 tool steel, [in] Proceedings of Fourth International Conference on Very High Cycle Fatigue (VHCF-4), Michigan, 2007, p.209.

  9. A. Medvedeva, J. Bergstróm, and S. Gunnarsson, Inclusions, stress concentrations and surface condition in bending fatigue of an H13 tool steel, Steel Res. Int., 79(2008), No.5, p.376.

    CAS  Google Scholar 

  10. Y.B. Liu, Z.G. Yang, Y.D. Li, S.M. Chen, S.X. Li, W.J. Hui, and Y.Q. Weng, Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime, Mater. Sci. Eng. A, 517(2009), p.180.

    Article  Google Scholar 

  11. Y. Murakami, S. Kodama, and S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels: I. Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusion, Int. J. Fatigue, 11(1989), p.291.

    Article  CAS  Google Scholar 

  12. Y. Furuya, S. Matsuoka, and T. Abe, Inclusion-controlled fatigue properties of 1800 MPa-class spring steels, Metall. Mater. Trans. A, 35(2004), p.3737.

    Article  Google Scholar 

  13. Z.G. Yang, S.X. Li, Y.D. Li, Y.B. Liu, W.J. Hui, and Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime, Mater. Sci. Eng. A, 527(2010), p.559.

    Article  Google Scholar 

  14. K. Tanaka and Y. Akiniwa, Fatigue crack propagation behavior derived from S-N data in very high cycle regime, Fatigue Fract. Eng. Mater. Struct., 25(2002), p.775.

    Article  CAS  Google Scholar 

  15. Q.Y. Wang, C. Bathias, N. Kawagoishi, and Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, Int. J. Fatigue, 24(2002), p.1269.

    Article  CAS  Google Scholar 

  16. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu, Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime, Int. J. Fatigue, 28(2006), p.1521.

    Article  CAS  Google Scholar 

  17. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, and H. Danninger, Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel, Int. J. Fatigue, 30(2008), p.1137.

    Article  CAS  Google Scholar 

  18. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, and H. Danninger, Fatigue behavior of M2 and M42 high speed steel up to the gigacycle regime, Kovove Mater., 47(2009), p.147.

    CAS  Google Scholar 

  19. J. Yao, X.H. Qu, Rafi-ud-din, X.B. He, and L. Zhang, Effect of inclusion on high cycle fatigue response of a powder metallurgy tool steel, J. Cent. South Univ. Technol., 19(2012), p.1773.

    Article  CAS  Google Scholar 

  20. J. Yao, X.H. Qu, X.B. He, and L. Zhang, Inclusion-controlled high cycle fatigue behavior of a high V alloyed powder metallurgy cold-working tool steel, Mater. Sci. Eng. A, 528(2011), p.4180.

    Article  Google Scholar 

  21. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, and H. Danninger, Fractographic evaluation of gigacycle fatigue crack nucleation and propagation of a high Cr alloyed cold work tool steel, Int. J. Fatigue, 30(2008), p.2191.

    Article  CAS  Google Scholar 

  22. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono, Fatigue of cold-work tool steels: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations, Metall. Mater. Trans. A, 35(2004), p.1289.

    Article  Google Scholar 

  23. Y. Murakami, Stress Intensity Factors Handbook, Oxford Press, New York, 1987, p.668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-hui Qu.

Additional information

This work was financially supported by the National Key Technologies Research and Development Program of China (No. 2007BAE51B05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Qu, Xh., He, Xb. et al. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel. Int J Miner Metall Mater 19, 608–614 (2012). https://doi.org/10.1007/s12613-012-0602-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0602-6

Keywords

Navigation