Skip to main content
Log in

Diet Modulation Restores Autophagic Flux in Damaged Skeletal Muscle Cells

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Autophagy is a physiological and highly regulated mechanism, crucial for cell homeostasis maintenance. Its impairment seems to be involved in the onset of several diseases, including muscular dystrophies, myopathies and sarcopenia. According to few papers, chemotherapeutic drug treatment is able to trigger side effects on skeletal muscle tissue and, among these, a defective autophagic activation, which leads to the persistence of abnormal organelles within cells and, finally, to myofiber degeneration. The aim of this work is to find a strategy, based on diet modulation, to prevent etoposide-induced damage, in a model of in vitro skeletal muscle cells.

Methods

Glutamine supplementation and nutrient deprivation have been chosen as pre-treatments to counteract etoposide effect, a chemotherapeutic drug known to induce oxidative stress and cell death. Cell response has been evaluated by means of morpho-functional, cytofluorimetric and molecular analyses.

Results

Etoposide treated cells, if compared to control, showed dysfunctional mitochondria presence, ER stress and lysosomal compartment damage, confirmed by molecular investigations.

Conclusions

Interestingly, both dietary approaches were able to rescue myofiber from etoposide-induced damage. Glutamine supplementation, in particular, seemed to be a good strategy to preserve cell ultrastructure and functionality, by preventing the autophagic impairment and partially restoring the normal lysosomal activity, thus maintaining skeletal muscle homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sandri M, Coletto L, Grumati P, Bonaldo P: Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell Sci 2013, 126: 5325–33. https://doi.org/10.1242/jcs.114041.

    Article  CAS  PubMed  Google Scholar 

  2. Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC: Chemotherapy-induced muscle wasting: association with NF-ϰB and cancer cachexia. Eur J Transl Myol 2018, 28(2): 7590. https://doi.org/10.4081/ejtm.2018.7590.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee Y, Lee HY, Gustafsson AB: Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol 2012, 60: 118–124. doi: https://doi.org/10.1097/FJC.0b013e318256cdd0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132(1): 27–42. https://doi.org/10.1016/j.cell.2007.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451(7182): 1069–1075. doi: https://doi.org/10.1038/nature06639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park YE, Hayashi YK, Bonne G, Arimura T, Noguchi S, Nonaka I, Nishino I: Autophagic degradation of nuclear components in mammalian cells. Autophagy 2009, 5(6): 795–804. https://doi.org/10.4161/auto.8901

    Article  CAS  PubMed  Google Scholar 

  7. Saha S, Panigrahi DP, Patil S, Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother 2018, 104: 85–495. https://doi.org/10.1016/j.biopha.2018.05.007.

    Article  CAS  Google Scholar 

  8. Lu SZ, Harrison-Findik DD: Autophagy and cancer. World J Biol Chem 2013, 4(3): 64–70. doi: https://doi.org/10.4331/wjbc.v4.i3.64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henson E, Chen Y, Gibson S: EGFR family members’ regulation of autophagy is at a crossroads of cell survival and death in cancer. Cancers (Basel) 2017, 9(4): pii: E27. https://doi.org/10.3390/cancers9040027.

    Article  CAS  Google Scholar 

  10. Kang YH, Cho MH, Kim JY, Kwon MS, Peak JJ, Kang SW, Yoon SY, Song Y: Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget 2016, 7(24): 35577–35591. https://doi.org/10.18632/oncotarget.9590.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheung ZH, Ip NY: Autophagy deregulation in neurodegenerative diseases — recent advances and future perspectives. J Neurochem 2011, 118(3): 317–325. https://doi.org/10.1111/j.1471-4159.2011.07314.x.

    Article  CAS  PubMed  Google Scholar 

  12. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A: A block of autophagy in lysosomal storage disorders. Hum Mol Genet 2008, 17(1): 119–29. https://doi.org/10.1093/hmg/ddm289.

    Article  CAS  PubMed  Google Scholar 

  13. Fanzani A, Zanola A, Rovetta F, Rossi S, Aleo MF: Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems. Toxicol Appl Pharmacol 2011, 250(3), 312–321. https://doi.org/10.1016/j.taap.2010.11.003.

    Article  CAS  PubMed  Google Scholar 

  14. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, Rezzani R: Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protectiverole of melatonin. PLoS One 2014, 9(10):e111141. https://doi.org/10.1371/journal.pone.0111141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Salucci S, Burattini S, Baldassarri V, Battistelli M, Canonico B, Valmori A, Papa S, Falcieri E: The peculiar apoptotic behavior of skeletal muscle cells. Histol Histopathol 2013, 28(8), 1073–1087. doi: https://doi.org/10.14670/HH-28.1073.

    PubMed  Google Scholar 

  16. Salucci S, Baldassarri V, Canonico B, Burattini S, Battistelli M, Guescini M, Papa S, Stocchi V, Falcieri E: Melatonin behavior in restoring chemical damaged C2C12 myoblasts. Microsc Res Tech 2016: 79(6), 532–540. doi: https://doi.org/10.1002/jemt.22663.

    Article  CAS  PubMed  Google Scholar 

  17. Salucci S, Battistelli M, Baldassarri V, Burini D, Falcieri E, Burattini S: Melatonin prevents mitochondrial dysfunctions and death in differentiated skeletal muscle cells. Microsc Res Tech 2017, 80(11): 1174–1181. doi: https://doi.org/10.1002/jemt.22663.

    Article  CAS  PubMed  Google Scholar 

  18. Conte E, Camerino GM, Mele A, De Bellis M, Pierno S, Rana F, Fonzino A, Caloiero R, Rizzi L, Bresciani E, Ben Haj Salah K, Fehrentz JA, Martinez J, Giustino A, Mariggiò MA, Coluccia M, Tricarico D, Lograno MD, De Luca A, Torsello A, Conte D, Liantonio A: Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle, 2017, 8(3): 386–404. https://doi.org/10.1002/jcsm.12185.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Douglas E, McMillan DC: Towards a simple objective framework for the investigation and treatment of cancer cachexia: the Glasgow Prognostic Score. Cancer Treat Rev 2014, 40(6): 685–91. https://doi.org/10.1016/j.ctrv.2013.11.007.

    Article  PubMed  Google Scholar 

  20. Gaurav K, Goel RK, Shukla M, Pandey M: Glutamine: a novel approach to chemotherapy-induced toxicity. Indian J Med Paediatr Oncol 2012, 33(1): 13–20. doi: https://doi.org/10.4103/0971-5851.96962.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yoshida S, Kaibara A, Ishibashi N, Shirouzu K: Glutamine supplementation in cancer patients. Nutrition 2001, 17(9):766–768 https://doi.org/10.1016/S0899-9007(01)00629-3

    Article  CAS  PubMed  Google Scholar 

  22. Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE, Sharples AP: l-glutamine improves skeletal muscle cell differentiation and prevents myotube atrophy after cytokine (tnf-α) stress via reduced p38 mapk signal transduction. J Cell Physiol 2016, 231(12): 2720–2732. https://doi.org/10.1002/jcp.25380.

    Article  CAS  PubMed  Google Scholar 

  23. De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D: Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014, 6: 188. https://doi.org/10.3389/fnagi.2014.00188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Battistelli M, Salucci S, Olivotto E, Facchini A, Minguzzi M, Guidotti S, Pagani S, Flamigni F, Borzì RM, Facchini A, Falcieri E: Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis 2014, 19(10): 1471–1483. doi: https://doi.org/10.1007/s10495-014-1017-9.

    Article  CAS  PubMed  Google Scholar 

  25. Burattini S, Salucci S, Baldassarri V, Accorsi A, Piatti E, Madrona A, Espartero JL, Candiracci M, Zappia G, Falcieri E: Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food Chem Toxicol 2013, 55: 248–256. https://doi.org/10.1016/j.fct.2012.12.049.

    Article  CAS  PubMed  Google Scholar 

  26. Salucci S, Burattini S, Falcieri E, Gobbi P: Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope. Eur J Histochem 2015, 59(3): 2539. doi: https://doi.org/10.4081/ejh.2015.2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salucci S, Battistelli M, Burattini S, Squillace C, Canonico B, Gobbi P, Papa S, Falcieri E: C2C12 myoblast sensitivity to different apoptotic chemical triggers. Micron 2010, 41(8): 966–73. https://doi.org/10.1016/j.micron.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  28. Burattini S, Battistelli M, Codenotti S, Falcieri E, Fanzani A, Salucci S: Melatonin action in tumor skeletal muscle cells: an ultrastructural study. Acta Histochem 2016, 118(3): 278–285. doi: https://doi.org/10.1016/j.acthis.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  29. Costamagna D, Quattrocelli M, van Tienen F, Umans L, de Coo IF, Zwijsen A, Huylebroeck D, Sampaolesi M: Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 2016, 8(1): 73–87. https://doi.org/10.1093/jmcb/mjv059.

    Article  CAS  PubMed  Google Scholar 

  30. Luchetti F, Canonico B, Mannello F, Masoni C, D’Emilio A, Battistelli M, Papa S, Falcieri E: Melatonin reduces early changes in intramitochondrial cardiolipin during apoptosis in U937 cell line. Toxicol In Vitro 2007, 21: 293–301. https://doi.org/10.1016/j.tiv.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  31. Canonico B, Campana R, Luchetti F, Arcangeletti M, Betti M, Cesarini E, Ciacci C, Vittoria E, Galli L, Papa S, Baffone W: Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis 2014, 19: 1225–1242. https://doi.org/10.1007/s1049.

    Article  CAS  PubMed  Google Scholar 

  32. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM: Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 1998, 53: 785–794. https://doi.org/10.1016/S0006-3495(88)83158-8.

    Article  Google Scholar 

  33. Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, Papa S: ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med 2009, 46: 339–351. https://doi.org/10.1016/j.freeradbiomed.2008.09.017.

    Article  CAS  PubMed  Google Scholar 

  34. Hogg RC, Adams DJ: An atp-sensitive k (+) conductance in dissociated neurones from adult rat intracardiac ganglia. J. Physiol 2001, 534: 713–720. https://doi.org/10.1111/j.1469-7793.2001.00713.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghasemi M, Khodaei N, Salari S, Eliassi A, Saghiri R: Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes. Iran. Biomed. J 2014, 18: 165–172. doi: https://doi.org/10.6091/ibj.13082.2014.

    PubMed  PubMed Central  Google Scholar 

  36. Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard AK: Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 2004, 80(1), 34–48. https://doi.org/10.1093/toxsci/kfh121

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Azad MB, Gibson SB: Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2010, 88: 285–295. https://doi.org/10.1139/Y10-010.

    Article  CAS  PubMed  Google Scholar 

  38. Canonico B, Cesarini E, Salucci S, Luchetti F, Falcieri E, Di Sario G, Palma F, Papa S: Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes. PLoS One 2016, 11(10): e0165780. https://doi.org/10.1371/journal.pone.0165780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Salucci S, Burattini S, Buontempo F, Martelli AM, Falcieri E, Battistelli M: Protective effect of different antioxidant agents in UVB-irradiated keratinocytes. Eur J Histochem 2017, 61(3), 2784. doi: https://doi.org/10.4081/ejh.2017.2784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gabillard JC, Sabin N, Paboeuf G: In vitro characterization of proliferation and differentiation of trout satellite cells. Cell Tissue Res. 2010, 342(3):471–7. doi: https://doi.org/10.1007/s00441-010-1071-8. Epub 2010 Nov 18.

    Article  PubMed  Google Scholar 

  41. Kwak HJ, Choi HE, Cheon HG: 5-LO inhibition ameliorates palmitic acid-induced ER stress, oxidative stress and insulinresistance via AMPK activation in murinemyotubes. Sci Rep 2017, 7(1): 5025. doi: https://doi.org/10.1038/s41598-017-05346-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lee J, Ozcan U: Unfolded protein response signaling and metabolic diseases. J Biol Chem 2014, 289(3): 1203–1211. doi: https://doi.org/10.1074/jbcR113.534743.

    Article  CAS  PubMed  Google Scholar 

  43. Foti DM, Welihinda A, Kaufman RJ, Lee AS: Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J Biol Chem 1999, 274(43): 30402–30409. doi: https://doi.org/10.1074/jbc.274.43.30402

    Article  CAS  PubMed  Google Scholar 

  44. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000, 2(6): 326–332. doi: https://doi.org/10.1038/35014014.

    Article  CAS  PubMed  Google Scholar 

  45. Aversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, Colasante G, Tirone A, Rossi Fanelli F, Ramaccini C, Costelli P, Muscaritoli M: Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep 2016, 6: 30340. doi: https://doi.org/10.1038/srep30340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanida I, Ueno T, Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004, 36(12):2503–18. https://doi.org/10.1016/j.biocel.2004.05.009.

    Article  CAS  PubMed  Google Scholar 

  47. Kirkin V, McEwan DG, Novak I, Dikic I: A role for ubiquitin in selective autophagy. Mol Cell 2009, 34(3): 259–69. https://doi.org/10.1016/j.molcel.2009.04.026.

    Article  CAS  PubMed  Google Scholar 

  48. Klionsky DJ et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12(1):1–222. doi: https://doi.org/10.1080/15548627.2015.1100356.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saitoh T, Akira S: Regulation of innate immune responses by autophagy-related proteins. J Cell Biol 2010, 189(6):925–935. https://doi.org/10.1083/jcb.201002021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee JA, Gao FB: ESCRT, autophagy, and frontotemporal dementia. BMB Rep 2008, 41(12): 827–832. doi: https://doi.org/10.1016/j.freeradbiomed.2017.07.017.

    Article  CAS  PubMed  Google Scholar 

  51. Levine B, Mizushima N, Virgin HW: Autophagy in immunity and inflammation. Nature 2011, 469(7330): 323–335. doi: https://doi.org/10.1038/nature09782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P: Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 2010, 16(11), 1313–20. doi: https://doi.org/10.1038/nm.2247.

    Article  CAS  PubMed  Google Scholar 

  53. Romanello V, Sandri M: Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 2016, 6:422. doi: https://doi.org/10.3389/fphys.2015.00422.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pollock N, Staunton CA, Vasilaki A, McArdle A, Jackson MJ: Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervatedfibers: Role in muscle aging. Free Radic Biol Med 2017, 112: 84–92. https://doi.org/10.1016/j.freeradbiomed.2017.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pierre N, Barbé C, Gilson H, Deldicque L, Raymackers JM, Francaux M: Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun. 2014, 450(1): 459–63. https://doi.org/10.1016/j.bbrc.2014.05.143.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009, 183(9): 5909–16. https://doi.org/10.4049/jimmunol.0900441.

    Article  CAS  PubMed  Google Scholar 

  57. Park SY, Sun EG, Lee Y, Kim MS, Kim JH, Kim WJ, Jung JY: Autophagy induction plays a protective role against hypoxic stress in human dental pulp cells. J Cell Biochem 2018, 119(2): 1992–2002. https://doi.org/10.1002/jcb.26360.

    Article  CAS  PubMed  Google Scholar 

  58. Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T: Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009, 452: 181–97. https://doi.org/10.1016/S0076-6879(08)03612-4.

    Article  PubMed  CAS  Google Scholar 

  59. Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WW, Bay BH, Yen PM: Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology 2016, 157(1):23–38. https://doi.org/10.1210/en.2015-1632.

    Article  CAS  PubMed  Google Scholar 

  60. Glick D, Barth S, Macleod KF: Autophagy: cellular and molecular mechanisms. J Pathol 2010, 221(1), 3–12. https://doi.org/10.1002/path.2697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Masiero E, Sandri M: Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy 2010, 6(2): 307–309. doi: https://doi.org/10.4161/auto.6.2.11137.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been possible thanks to the DISB 2017 Enhancement Project of Urbino University. We would like to thank the researchers of the Translational Cardiomyology Laboratory (KU Leuven) for suggestions and support in IF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Salucci.

Additional information

Conflict of interest: No conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, F.M., Burattini, S., Buontempo, F. et al. Diet Modulation Restores Autophagic Flux in Damaged Skeletal Muscle Cells. J Nutr Health Aging 23, 739–745 (2019). https://doi.org/10.1007/s12603-019-1245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-019-1245-3

Key words

Navigation