Skip to main content

Advertisement

Log in

Identification of a Novel Potential Probiotic Lactobacillus plantarum FB003 Isolated from Salted-Fermented Shrimp and its Effect on Cholesterol Absorption by Regulation of NPC1L1 and PPARα

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Cholesterol-lowering activity is an important health benefit of lactic acid bacteria (LAB). This study aimed to screen LAB strains with cholesterol-lowering activities from salted fermented shrimp and evaluate probiotic characteristics and cholesterol-lowering potentials of these LAB isolates. Among 191 lactic acid strains isolated from traditional salted-fermented shrimp food, FB003 isolate showed the highest cholesterol-lowering activity and investigated as probiotics with cholesterol-lowering ability. Biochemical analysis and 16S rRNA sequencing revealed that this LAB isolate was Lactobacillus plantarum FB003. To screen probiotic trait, L. plantarum FB003 was found to be susceptible to six antibiotics tested and broad-spectrum antimicrobial activity. It also produced various enzymes such as galactosidase, glucosidase, and mannosidase. In addition, this strain showed autoaggregation, and coaggregation capacity for various pathogens. Moreover, it could adhere to Caco-2 cells and be exerted lowering cholesterol effects in Caco-2 cells via an upregulation of PPARα to inhibit NPC1L1 mRNA expression. Strain L. plantarum FB003 might be effective as a candidate probiotic with high cholesterol-lowering activity. The results of the present study suggest that L. plantarum FB003 have an impact on preventing high cholesterol level and may be used as starter culture for shrimp fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mann GV, Spoerry A (1974) Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 27(5):464–469

    Article  CAS  PubMed  Google Scholar 

  2. Valeriano V, Balolong M, Kang DK (2017) Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 122(3):554–567. https://doi.org/10.1111/jam.13364

    Article  CAS  PubMed  Google Scholar 

  3. Angmo K, Kumari A, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci Technol 66:428–435. https://doi.org/10.1016/j.lwt.2015.10.057

    Article  CAS  Google Scholar 

  4. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G (2015) The perspective on cholesterol-lowering mechanisms of probiotics. Mol Nutr Food Res 59(1):94–105. https://doi.org/10.1002/mnfr.201400548

    Article  CAS  PubMed  Google Scholar 

  5. Kumar R, Grover S, Batish VK (2012) Bile salt hydrolase (Bsh) activity screening of Lactobacilli: in vitro selection of indigenous Lactobacillus strains with potential bile salt hydrolysing and cholesterol-lowering ability. Probiotics Antimicrob Proteins 4(3):162–172. https://doi.org/10.1007/s12602-012-9101-3

    Article  CAS  PubMed  Google Scholar 

  6. Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S (2013) Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther 13(5):631–642. https://doi.org/10.1517/14712598.2013.758706

    Article  CAS  PubMed  Google Scholar 

  7. Liong MT, Shah NP (2005) Optimization of cholesterol removal, growth and fermentation patterns of Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructo-oligosaccharide and inulin: a response surface methodology approach. J Appl Microbiol 98(5):1115–1126. https://doi.org/10.1111/j.1365-2672.2005.02544.x

    Article  CAS  PubMed  Google Scholar 

  8. Yoon H-s, Ju J-h, Kim H, Lee J, Park H-j, Ji Y, Shin H-k, Do M-S, Lee J-m, Holzapfel W (2011) Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 promote cholesterol excretion through the up-regulation of ABCG5/8 in Caco-2 cells. Probiotics Antimicrob Proteins 3(3–4):194–203. https://doi.org/10.1007/s12602-011-9086-3

    Article  CAS  PubMed  Google Scholar 

  9. Yoon H-S, Ju J-H, Kim H-N, Park H-J, Ji Y, Lee J-E, Shin H-K, Do M-S, Holzapfel W (2013) Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods. Int J Food Sci Nutr 64(1):44–52. https://doi.org/10.3109/09637486.2012.706598

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura F, Ishida Y, Aihara K, Sawada D, Ashida N, Sugawara T, Aoki Y, Takehara I, Takano K, Fujiwara S (2016) Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microb Ecol Health Dis 27(1):30312. https://doi.org/10.3402/mehd.v27.30312

    Article  CAS  PubMed  Google Scholar 

  11. Devi SM, Halami PM (2017) Genetic variation of pln loci among probiotic Lactobacillus plantarum group strains with antioxidant and cholesterol-lowering ability. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-017-9336-0

  12. Lee SH, Jung JY, Jeon CO (2015) Bacterial community dynamics and metabolite changes in myeolchi-aekjeot, a Korean traditional fermented fish sauce, during fermentation. Int J Food Microbiol 203:15–22

    Article  CAS  PubMed  Google Scholar 

  13. Jeun YC, Park KS, Kim C, Fowler W, Kloepper J (2004) Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29(1):34–42. https://doi.org/10.1016/S1049-9644(03)00082-3

    Article  Google Scholar 

  14. Jeong JH, Lee CY, Chung DK (2016) Probiotic lactic acid bacteria and skin health. Crit Rev Food Sci Nutr 56(14):2331–2337. https://doi.org/10.1080/10408398.2013.834874

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka K, Sakai T, Ikeda I, Imaizumi K, Sugano M (1998) Effects of dietary shrimp, squid and octopus on serum and liver lipid levels in mice. Biosci Biotechnol Biochem 62(7):1369–1375. https://doi.org/10.1271/bbb.62.1369

    Article  CAS  PubMed  Google Scholar 

  16. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522. https://doi.org/10.3390/ijms11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Argyri AA, Zoumpopoulou G, Karatzas K-AG, Tsakalidou E, Nychas G-JE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Lye H-S, Rahmat-Ali GR, Liong M-T (2010) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20(3):169–175. https://doi.org/10.1016/j.idairyj.2009.10.003

    Article  CAS  Google Scholar 

  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mishra V, Prasad D (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103(1):109–115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047

    Article  PubMed  Google Scholar 

  21. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  22. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:10. https://doi.org/10.2903/j.efsa.2012.2740

    Article  CAS  Google Scholar 

  23. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/S0168-1605(99)00152-X

    Article  CAS  PubMed  Google Scholar 

  24. Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T (2010) Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2):131–136. https://doi.org/10.1016/j.anaerobe.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  25. Bove P, Gallone A, Russo P, Capozzi V, Albenzio M, Spano G, Fiocco D (2012) Probiotic features of Lactobacillus plantarum mutant strains. Appl Microbiol Biotechnol 96(2):431–441. https://doi.org/10.1007/s00253-012-4031-2

    Article  CAS  PubMed  Google Scholar 

  26. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  27. Guan L, Cho KH, Lee J-H (2011) Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol 28(1):101–113. https://doi.org/10.1016/j.fm.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Wang X, Wang J, Wu F, Sui Y, Yang L, Wang Z (2013) Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci 96(5):2746–2753

    Article  CAS  PubMed  Google Scholar 

  29. Michael D, Moss J, Calvente DL, Garaiova I, Plummer S, Ramji D (2016) Lactobacillus plantarum CUL66 can impact cholesterol homeostasis in Caco-2 enterocytes. Benefic Microbes 7(3):443–451. https://doi.org/10.3920/BM2015.0146

    Article  CAS  Google Scholar 

  30. Liu DM, Guo J, Zeng XA, Sun DW, Brennan CS, Zhou QX, Zhou JS (2017) The probiotic role of Lactobacillus plantarum in reducing risks associated with cardiovascular disease. Int J Food Sci Technol 52(1):127–136. https://doi.org/10.1111/ijfs.13234

    Article  CAS  Google Scholar 

  31. Šušković J, Kos B, Beganović J, Leboš Pavunc A, Habjanič K, Matošić S (2010) Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 48(3):296–307

    Google Scholar 

  32. Songisepp E, Kullisaar T, Hütt P, Elias P, Brilene T, Zilmer M, Mikelsaar M (2004) A new probiotic cheese with antioxidative and antimicrobial activity. J Dairy Sci 87(7):2017–2023

    Article  CAS  PubMed  Google Scholar 

  33. Ding W, Shi C, Chen M, Zhou J, Long R, Guo X (2017) Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J Funct Foods 32:324–332. https://doi.org/10.1016/j.jff.2017.03.021

    Article  CAS  Google Scholar 

  34. Arena MP, Russo P, Capozzi V, López P, Fiocco D, Spano G (2014) Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol 98(17):7569–7581. https://doi.org/10.1007/s00253-014-5837-x

    Article  CAS  PubMed  Google Scholar 

  35. Arai T, Obuchi S, Eguchi K, Seto Y (2016) In vitro investigation of molecules involved in Lactobacillus gasseri SBT2055 adhesion to host intestinal tract components. J Appl Microbiol 120(6):1658–1667. https://doi.org/10.1111/jam.13137

    Article  CAS  PubMed  Google Scholar 

  36. Candela M, Seibold G, Vitali B, Lachenmaier S, Eikmanns BJ, Brigidi P (2005) Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol 156(8):887–895

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Wang J, Cheng Y, Zheng Y (2010) The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-Like 1. Br J Nutr 104(6):807–812. https://doi.org/10.1017/S0007114510001285

    Article  CAS  PubMed  Google Scholar 

  38. Lim F, Lim S, Ramasamy K (2017) Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 assimilate cholesterol and modulate ABCA1, CD36, NPC1L1 and SCARB1 in vitro. Benefic Microbes 8(1):97–109. https://doi.org/10.3920/BM2016.0048

    Article  CAS  Google Scholar 

  39. Kim DH, Jeong D, Kang IB, Kim H, Song KY, Seo KH (2017) Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet–induced obesity: direct reduction of cholesterol and upregulation of PPARα in adipose tissue. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700252

  40. Valasek MA, Clarke SL, Repa JJ (2007) Fenofibrate reduces intestinal cholesterol absorption via PPARα-dependent modulation of NPC1L1 expression in mouse. J Lipid Res 48(12):2725–2735. https://doi.org/10.1194/jlr.M700345-JLR200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out with the support of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03027816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hwan Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Table S1.

Physiological and biochemical characteristics of Lactobacillus plantarum FB003 isolated from jeotgal based on API 50 CH system and additional tests after incubation at 37° C for 24 h (+, positive; −, negative) (DOCX 15 kb)

Table S2.

Enzyme activities of Lactobacillus plantarum FB003 (API ZYM KIT) (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, B., Yang, SH. Identification of a Novel Potential Probiotic Lactobacillus plantarum FB003 Isolated from Salted-Fermented Shrimp and its Effect on Cholesterol Absorption by Regulation of NPC1L1 and PPARα. Probiotics & Antimicro. Prot. 11, 785–793 (2019). https://doi.org/10.1007/s12602-018-9469-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9469-9

Keywords

Navigation