Skip to main content
Log in

Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 Promote Cholesterol Excretion Through the Up-Regulation of ABCG5/8 in Caco-2 Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agerbeck M, Gerdes LU, Richelsen B (1995) Hypocholesterolaemic effect of a new fermented milk product in healthy middle aged men. Eur J Clin Nutr 49:346–352

    Google Scholar 

  2. Agerholm-Larsen L, Raben A, Haulrik N, Hansen AS, Manders M, Astrup A (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clinl Nutr 54:288–297

    Article  CAS  Google Scholar 

  3. Agerholm-Larsen L, Bell ML, Grunwald GK, Astrup A (2000) The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr 54:856–860

    Article  CAS  Google Scholar 

  4. Anderson JW, Gilliland SE (1999) Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 18:43–50

    CAS  Google Scholar 

  5. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, Tangirala RK, Tontonoz P (2007) Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 117:2337–2346

    Article  CAS  Google Scholar 

  6. Bradley MN, Tontonoz P (2005) Lesion macrophages are a key target for the antiatherogenic effects of LXR agonists. Rev Arterioscl Thromb Vasc Biol 25:10–11

    Article  CAS  Google Scholar 

  7. Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8:28

    Article  Google Scholar 

  8. Brown JM, Yu L (2009) Opposing gatekeepers of apical sterol transport: niemann-pick C1-like 1 (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem 9:18–29

    Article  CAS  Google Scholar 

  9. Cai L, Eckhardt ER, Shi W, Zhao Z, Nasser M, de Villiers WJ, van der Westhuyzen DR (2004) Scavenger receptor class B type I reduces cholesterol absorption in cultured enterocyte CaCo-2 cells. J Lipid Res 45:253–262

    Article  CAS  Google Scholar 

  10. Cavallini DC, Bedani R, Bomdespacho LQ, Vendramini RC, Rossi EA (2009) Effects of probiotic bacteria, isoflavones and simvastatin on lipid profile and atherosclerosis in cholesterol-fed rabbits: a randomized double-blind study. Lipids Health Dis 8(1). doi:10.1186/1476-511X-8-1

  11. De Vogel-van den Bosch HM, de Wit NJ, Hooiveld GJ, Vermeulen H, van der Veen JN, Houten SM, Kuipers F, Müller M, van der Meer R (2008) A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastr Liver Physiol 294:G1171–G1180

    Article  Google Scholar 

  12. Do MS, Hyun CK, Choi BH, Kim YH, Park JW, Lee SY (2006) Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3–L1 adipocyte. Exp Mol Med 38:599–605

    Google Scholar 

  13. Du Toit M, Franz CMAP, Dicks LMT, Schillinger U, Haberer P, Warlies B, Ahrens F, Holzapfel WH (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int J Food Microbiol 40:93–104

    Article  CAS  Google Scholar 

  14. Engle MJ, Goetz GS, Alpers DH (1998) Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J Cell Physiol 174:362–369

    Article  CAS  Google Scholar 

  15. Fukushima M, Nakano M (1996) Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet. Br J Nutr 76:857–867

    Article  CAS  Google Scholar 

  16. Gill HS, Guarner F (2004) Probiotics and human health: a clinical perspective. Postgrad Med J 80:516–526

    Article  CAS  Google Scholar 

  17. Hazard SE (2007) Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflüger’s Arch 453:745–752

    Article  CAS  Google Scholar 

  18. He F, Tuomola E, Arvilommi H, Salminen S (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol 29:47–52

    Article  Google Scholar 

  19. Huang Y, Zheng Y (2010) The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br J Nutr 103:473–478

    Article  CAS  Google Scholar 

  20. Kim HG, Kim JY, Gim MG, Lee JM, Chung DK (2008) Mechanical stress induces tumor necrosis factor-{alpha} production through Ca2+ release-dependent TLR2 signaling. Am J Cell Physiol 295:C432–C439

    Article  CAS  Google Scholar 

  21. Kim JY, Lee SK, Hachimura S, Kaminogawa S, Lee HJ (2003) In vitro immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis. J Microbiol Biotechnol 13:202–206

    CAS  Google Scholar 

  22. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of Lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764

    Article  CAS  Google Scholar 

  23. Lee H-J, Yoon H-S, Ji Y, Kim H, Park H-J, Lee J, Shin H-K, Holzapfel W (2011) Functional properties of Lactobacillus strains isolated from kimchi. Int J Food Microbiol 145:155–161

    Article  CAS  Google Scholar 

  24. Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88:55–66

    Article  CAS  Google Scholar 

  25. Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of Lactobacilli strains. Int Dairy J 15:391–398

    Article  CAS  Google Scholar 

  26. Mann GV, Spoerry A (1974) Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 27:464–469

    CAS  Google Scholar 

  27. Mansoub NH (2010) Effect of probiotic bacteria utilization on serum cholesterol and triglycerides contents and performance of broiler chickens. Glob Vet 5:184–186

    CAS  Google Scholar 

  28. Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Op Biotechnol 17:204–210

    Article  CAS  Google Scholar 

  29. Mathara JM, Schillinger U, Guigas C, Franz CMAP, Kutima PM, Mbugua S, Shin H-K, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  CAS  Google Scholar 

  30. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522

    Article  CAS  Google Scholar 

  31. Panda AK, Reddy MR, Ramarao SV, Praharaj NK (2003) Production performance, serum/yolk cholesterol and immune competence of white leghorn layers as influenced by dietary supplementation with probiotics. Trop Anim Health Prod 32:85–94

    Article  Google Scholar 

  32. Perdigon G, Alvarez S, Rachid M, Aguero G, Gobbato N (1995) Immune system stimulation by probiotics. J Dairy Sci 78:1597–1606

    Article  CAS  Google Scholar 

  33. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277:18793–18800

    Article  CAS  Google Scholar 

  34. Sabol SL, Brewer HB Jr, Santamarina-Fojo S (2005) The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 46:2151–2167

    Article  CAS  Google Scholar 

  35. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204–211

    Article  CAS  Google Scholar 

  36. Sudhop T, Lütjohann D, von Bergmann K (2005) Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharm Ther 105:333–341

    Article  CAS  Google Scholar 

  37. Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:1530–1535

    Article  Google Scholar 

  38. Trotter PJ, Storch J (1993) Fatty acid esterification during differentiation of the human intestinal cell line Caco-2. J Biol Chem 268:10017–10023

    CAS  Google Scholar 

  39. van Straten EM, Bloks VW, Huijkman NC, Baller JF, van Meer H, Lütjohann D, Kuipers F, Plösch T (2010) The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am J Physiol Regul Integr Comp Physiol 298:R275–R282

    Article  Google Scholar 

  40. Vaughan EE, Heilig HG, Ben-Amor K, de Vos WM (2005) Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29:477–490

    Article  CAS  Google Scholar 

  41. Wang J, Kobayashi M, Han M, Choi S, Takano M, Hashino S, Tanaka J, Kondoh T, Kawamura KI, Hosokawa M (2002) MyD88 is involved in the signaling pathway for taxtol-induced apoptosis and TNF-α expression in human myelomonocytic cells. Br J Haematol 118:638–645

    Article  CAS  Google Scholar 

  42. Zelcer N, Tontonoz P (2006) Liver X receptor as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614

    Article  CAS  Google Scholar 

  43. Zeng XQ, Pan DD, Guo YX (2010) The probiotic properties of Lactobacillus buchneri P2. J Appl Microbiol 108:2059–2066

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry, and Fisheries, Republic of Korea (Project #: 109114-03-1-HD120, # 109118-03-2-HD110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, Hs., Ju, Jh., Kim, H. et al. Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 Promote Cholesterol Excretion Through the Up-Regulation of ABCG5/8 in Caco-2 Cells. Probiotics & Antimicro. Prot. 3, 194–203 (2011). https://doi.org/10.1007/s12602-011-9086-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9086-3

Keywords

Navigation